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Abstract

The purpose of this paper is to provide a PAC error analysithi®g-norm soft margin classifier,

a support vector machine classification algorithm. It csetissof two parts: regularization error
and sample error. While many techniques are available fatitrg the sample error, much less
is known for the regularization error and the correspondipgroximation error for reproducing
kernel Hilbert spaces. We are mainly concerned about thdaggation error. It is estimated for
general distributions by K-functional in weighted. spaces. For weakly separable distributions
(i.e., the margin may be zero) satisfactory convergenes rate provided by means of separating
functions. A projection operator is introduced, which lead better sample error estimates espe-
cially for small complexity kernels. The misclassificatiemor is bounded by thé-risk associated
with a general class of loss functioxs The difficulty of bounding the offset is overcome. Poly-
nomial kernels and Gaussian kernels are used to demontteateain results. The choice of the
regularization parameter plays an important role in ouflyeig

Keywords: support vector machine classification, misclassificatiooreg-norm soft margin
classifier, regularization error, approximation error

1. Introduction

In this paper we study support vector machine (SVM) classification algesihnd investigate the
SVM g-norm soft margin classifier with & q < 0. Our purpose is to provide an error analysis for
this algorithm in the PAC framework.

Let (X,d) be a compact metric space anid- {1, —1}. A binary classifierf : X — {1,—1} isa
function fromX to Y which divides the input spac¢into two classes.

Let p be a probability distribution oZ := X xY and (X,9") be the corresponding random
variable. Thanisclassification errofor a classifierf : X — Y is defined to be the probability of the

event{ f(X) # 9}:
R(f) = Prob{f(X) # '} = [ P(Y # F(dpx (). ®
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Herepyx is the marginal distribution oX andP(-|x) is the conditional probability measure given
X=X

The SVMg-norm soft margin classifier (Cortes and Vapnik, 1995; Vapnik, 1998)nstructed
from samples and depends on a reproducing kernel Hilbert spamaatesl with a Mercer kernel.

LetK : X x X — R be continuous, symmetric and positive semidefinite, i.e., for any finite set of
distinct points{xs,---,%/} C X, the matrix(K(xi,xj))ﬁj:1 is positive semidefinite. Such a kernel is
called aMercer kernel

The Reproducing Kernel Hilbert Spad®KHS) #x associated with the kernél is defined
(Aronszajn, 1950) to be the closure of the linear span of the set ofifunsg Ky := K(x,-) : x € X}
with the inner product:,-) 5, = (-,-)k satisfying(Ky, Ky)x = K(x,y) and

(Kx, 9)k = 9(X), Vx e X,g € H.

DenoteC(X) as the space of continuous functionsXmwith the norm|| - ||o. LetK := /||K||c-
Then the above reproducing property tells us that

l9lle <Kllgllk, Vg€ Hk. 2)

Define Hy := #x + R. For a functionf = f; + b with f, € #« andb € R, we denotef* = f;
andbs = b € R. The constant termis called theoffset For a functionf : X — R, the sign function
is defined as sgif )(x) = 1 if f(x) > 0 and sgif)(x) = —1if f(x) <O.

Now theSVM g-norm soft margin classifié€6VM g-classifier) associated with the Mercer ker-
nelK is defined as sgf;), wheref;, is a minimizer of the following optimization problem involving
a set of random samples= (x;,yi)"; € Z™ independently drawn according o

f, :=arg min }||f*\|2 4 & 3 &
‘ featg 2 ¢ mi; a
subjectto yif(x)>1-&, and§ >0fori=1,...,m

(3)

HereC is a constant which depends on C = C(m), and oftenmlirogC(m) = 0o,

Throughout the paper, we assume:j < o, me N, C > 0, andz = (x;,y;){", are random
samples independently drawn accordingptdur target is to understand how gd§) converges
(with respect to the misclassification error) to the best classifier, the Bajegsasm and hence
C(m) tend to infinity. Recall the regression functionpf

00 = [ ydp(y) =P( =1} ~P(Y =—1px),  xeX. @

Then theBayes ruleis given (e.g. Devroye, L. G¥fi and G. Lugosi, 1997) by the sign of the
regression functioric := sgn(f,). Estimating the excess misclassification error

R(sgn(fz)) — R(fc) ()

for the classification algorithm (3) is our goal. In particular, we try to ustderd how the choice of
the regularization paramet€raffects the error.

To investigate the error bounds for general kernels, we rewrite (8)ragularization scheme.
Define the loss functioW =V as

V(. F(0) = (1-y ()T = ly— 09|y <1 (6)
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where(t), = max{0,t}. The correspondiny -riskis

E(f):=E /V y, f(x))dp(x.y). ()
If we set the empirical error as
m
ElV yi, F(x)) = _21(1 yif(x)3 8)
then the scheme (3) can be written as (see Evgeniou, Pontil and Pogg), 20
. 1 ..
to=arg min { 7(1) + 1R }. ©
feHy

Notice that whernH is replaced by, the scheme (9) is exactly the Tikhonov regularization
scheme (Tikhonov and Arsenin, 1977) associated with the loss funéti®@o one may hope that
the method for analyzing regularization schemes can be applied.

__ The definitions of th& -risk (7) and the empirical error (8) tell us that for a functibs f*+-b e
H, the random variablé =V (y, f(x)) on Z has the mearE(f) and 2 s, &(z) = Z,(f). Thus
we may expect by some standard empirical risk minimization (ERM) argument Qaigker and
Smale, 2001; Evgeniou, Pontil and Poggio, 2000; Shawe-Taylor eBaB; Vapnik, 1998; Wahba,
1990) to derive bounds faE( f,;) — E(fq), wherefq is a minimizer of the/-risk (7). It was shown
in Lin (2002) that forg > 1 such a minimizer is given by

o (L TV (1 gy
1 = L R T T 1 (1 fy() V@D

Forqg =1 a minimizer isf., see Wahba (1999). Note that $d§) = f..
Recall that for the classification algorithm (3), we are interested in thesexuoesclassification
error (5), not the exces\ss risk E(f,) — E(fq). But we shall see in Section 3 th&{(sgn(f)) —
R(fe) < V2(E E(fq)). One might apply this to the functiofy and get estimates for (5).
However speC|aI features of the loss function (6) enable us to do béierestricting f, onto
[—1,1], we can improve the sample error estimates. The idea of the following projexi&nator
was introduced for this purpose in Bartlett (1998).

x € X. (10)

Definition 1 Theprojection operatortis defined on the space of measurable functionX f— R
as

1, if f(x)>
n(f)y(x)=¢ -1, if f(x)<-1, (11)
f(x), if —1<f(x)<1l
It is trivial that sgriTi(f)) = sgn(f). Hence
R(sgr(f,) — R (fo) < \/2(E(T( 1) — E(fq)). (12)
The definition of the loss function (6) also tells us thiay, 1i(f)(x)) < V(y, f(x)), so
E(n(f)) <E(f) and  ZE(n(f)) < E(f). (13)

According to (12), we need to estimai&Ty( f,)) — E(fq) in order to bound (5). To this end, we
introduce aegularizing function £ c € H. Itis arbitrarily chosen and depends©n
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Proposition 2 Let fk c € ¢, and f, be defined by (9). The&(1i(f,)) — E(fq) can be bounded by

{£0ke)- 2t + sl }+ { B0~ Balrt ) + ) - 20l | (10
Proof Decompose the differencg(m(f,)) — E(fq) as
{pm(t) - zatnt)}+ { (et + g1 1R ) ~ (Zatheo)+ el )}

1. 1, ..
+H{ ) - Bltce)} + { o) Bt + el | - s 11

By the definition off, and (13), the second term<s0. Then the statement follows. |

The first term in (14) is called the regularization error (Smale and Zho04)201t can be

expressed as a generalizédunctional inf {Z(f)— E(fq) + 5| f*[|Z } whenfk ¢ takes a special
fEf"[K

choicefNKQ (a standard choice in the literature, e.g. Steinwart 2001) defined as

= . 1

= arg min { £(1)+ 2171} }. (15)
fE?‘[K ZC

Definition 3 LetV be a general loss function angi be a minimizer of the V -risk (7). Thegular-

ization errorfor the regularizing functiondc € ?[K is defined as

1 *
D(C) = f(fK,c)—f(f;\f)JrEHfK,cllﬁ- (16)

It is called theregularization error of the schen(@) when & c = f~K7C:

. : \% 1 *|2
(C) = fuer;_;K{z<f>—z:<fp>+2C||f It}
The main concern of this paper is the regularization error. We shall ineéstitp asymptotic

behavior. This investigation is not only important for bounding the first tarr(ii4), but also
crucial for bounding the second term (sample error): it is well knowrirctural risk minimization
(Shawe-Taylor et al., 1998) that the size of the hypothesis space ittiaks€his is determined by
D(C) in our setting. Onc€ is fixed, the sample error estimate becomes routine. Therefore, we
need to understand the choice of the paran@tieom the bound forD(C).

Proposition 4 Forany C>1/2and any kc € Hy, there holds

~ K2

D(C) > D(C) > > (17)
where
Ki=%To/(1+kgd™h), T = Inf {Z(b) - £(fq)}. (18)

Moreoverk = 0if and only if for some g€ [0,1], P(9 = 1|x) = po in probability.
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This proposition will be proved in Section 5.

According to Proposition 4, the decay #f(C) cannot be faster tha®(1/C) except for some
very special distributions. This special case is caused by the offs8),iiof which QN)(C) =0.
Throughout this paper we shall ignore this trivial case and assum®.

Whenp is strictly separablep(C) = O(1/C). Butthis is a very special phenomenon. In general,
one should not exped(f) = E(fq) for somef Hy. Even for (weakly) separable distributions
with zero margin,D(C) decays a®(CP) for some 0< p < 1. To realize such a decay for these
separable distributions, the regularizing function will be multiples of a sépgréunction. For
details and the concepts of strictly or weakly separable distributions, stiersa.

For general distributions, we shall chookec = ﬂ@c in Sections 6 and 7 and estimate the
regularization error of the scheme (9) associated with the loss functiday (@ans of the approxi-
mation in the function spadsl, . In particular,D(C) < X(fq, %), whereX( fq,t) is aK-functional
defined as

int {IIf — fqllly +tI 1702}, if1<g<2,
. feHy PX
K(fqt) =4 P ol (19)
int {q2 (214 1)||f — follg, +HITE}, fa>2
fG}[K X

In the caseg = 1, the regularization error (Wu and Zhou, 2004) depends on the @pgpaton
in Lgx of the function f. which is not continuous in general. Fqr> 1, the regularization error
depends on the approximation l'uﬁX of the functionfy. When the regression function has good
smoothnessfy has much higher regularity thag. Hence the convergence fqr> 1 may be faster
than that forg = 1, which improves the regularization error.

The second term in (14) is called teample error WhenC is fixed, the sample errag(f;) —
E,(f) is well understood (except for the offset term). In (14), the sampter érfor the function
1( f;) instead off, while the misclassification error (5) is ke (sgnm(f;))) = R (sgrn(f;)). Since
the bound foV (y, 1i(f)(x)) is much smaller than that fof(y, f(x)), the projection improves the
sample error estimate.

Based on estimates for the regularization error and sample error ahowerror analysis will
provideg(d,m,C,3) > 0 for any 0< & < 1 such that with confidence-19,

E(1(fz)) — E(fq) < (1+B){D(C) +(8,mC,B)}. (20)

Here 0< 3 < 1is an arbitrarily fixed number. Moreovmlia{é, m,C,B) =0.

If fqlies in theLg, -closure ofHy, thentlinowc( fq,t) =0 by (19). HenceE(T(f,)) — E(fy) — O

with confidence asn (and henc&€ = C(m)) becomes large. This is the case wiers a universal
kernel, i.e.,H is dense irC(X), or when a sequence of kernels whose RKHS tends to be dense
(e.g. polynomial kernels with increasing degrees) is used.

In summary, estimating the excess misclassification eRri@grn( f;)) — R (fc) consists of three
parts: the comparison (12), the regularization ef€) and the sample erra@(d, m,C, ) in (20).
As functions of the variabl€, D(C) decreases while(d,m,C,[3) usually increases. Choosing
suitable values for the regularization paraméewrill give the optimal convergence rate. To this
end, we need to consider the tradeoff between these two errors. TiHie cne by minimizing the
right side of (20), as shown in the following form.
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Lemma5 Let pa,T > 0. Denote g g1 := (p/r)T%p + (T/p)%. Then for any C> 0,

L, Ct 1\ e
C p+ﬁch=0‘5<ﬁ> . (21)

The equality holds if and only if & (p/r)ﬁmt%ﬁ. This yields the optimal powq%.
The goal of the regularization error estimates is to haire D(C) = O(CP), as large as possi-

ble. Butp < 1 according to Proposition 4. Good methods for sample error estimates @tavie

a and smallt such thag(d,m,C,) = O(%). Notice that, as always, both the approximation prop-

erties (represented by the exponehtand the estimation properties (represented by the exponents

T anda) are important to get good estimates for the learning rates (with the optimq%e)te

2. Demonstrating with Weakly Separable Distributions

With some special cases let us demonstrate how our error analysis yieldgsiaelines for choos-
ing the regularization paramet€r For weakly separable distributions, we also compare our re-
sults with bounds in the literature. To this end, we need the covering numhke afnit ball

B .= {f € H 1| f|lk <1} of Hk (considered as a subset@fX)).

Definition 6 For a subsetF of a metric space ang > 0, thecovering numbef\'( ¥ ,n) is defined
to be the minimal integef € N such that there exigtdisks with radius) covering¥ .

Denote the covering number d@f in C(X) by A’(B,n). Recall the constant defined in (18).
Since the algorithm involves an offset term, we also need its covering nuandeset

A = { (k-+ )+ 1A B) (22

Definition 7 We say that the Mercer kernel K h&sgarithmic complexity exponerd > 1 if for
some c> 0, there holds

logA((n) < c(log(1/n))®,  ¥n>0. (23)
The kernel K hapolynomial complexity exponerst> 0 if
logA((n) <c(1/n)°>,  vn>o. (24)

The covering number((B,n) has been extensively studied (see e.g. Bartlett, 1998; Williamson,
Smola and Sabikopf, 2001; Zhou, 2002; Zhou, 2003a). In particular, for cdation type kernels
K(x,y) = k(x—y) with k > 0 decaying exponentially fast, (23) holds (Zhou, 2002, Theorem 8). A
an example, consider the Gaussian kekgl,y) = exp{—|x—y|?/c?} with ¢ > 0. If X C [0,1]"
and 0< n < exp{90n?/c? — 11n— 3}, then (23) is valid (Zhou, 2002) witt=n-+1. A lower
bound (Zhou, 2003a) holds with= 3, which shows the upper bound is almost sharp. It was also
shown in (Zhou, 2003a) th&t has polynomial complexity exponem 2p if K is CP.

To demonstrate our main results concerning the regularization paraeteishall only choose
kernels having logarithmic complexity exponents or having polynomial complexitgreents with
ssmall. This meansHk has small complexity.
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The special case we consider here is the deterministic &as&) = 0. Understanding how to
find D(C) ande(d,m,C, B) in (20) and then how to choose the paramétées our target. FoM > 0,

denote f
0, ifM=0,
O = { 1, ifM>0. (25)

Proposition 8 SupposeR (o) = 0. If fxc € H satisfies|V(y, fk.c(X))|l» < M, then for every
0 < 0 < 1, with confidence at leadt— &, we have

R(sgn(fz)) <2 max{s*, %m(Z/&} +4D(C), (26)

where with := /2CD(C) + 2Cebp, €* > Qs the unique solution to the equation

log\( <q2qf3 M) - 2;1‘89 — l0g(5/2). 27)

(@) If (23) is valid, then withe = 24+9{1 +c((q+4)log 8)S},

& < 6( (logm+log(CD(C)) + mlog(ceM))S+ log(2/3) ) |

(b) If (24) is valid and C> 1, then with a constart (given explicitly in the proof),

(ZCQ)(C))S/(25+2) (ZC)S/(S+2) }

e < EIog(Z/é){ eyl ey + G (28)

Note that the above consta@itdepends ort,q, andk, but not onC, mor &. The proof of
Proposition 8 will be given in Section 5.
We can now derive our error bound for weakly separable distributions

Definition 9 We say thap is (weakly) separabléy Hy if there is a function dpe Hy, called a
separating functignsatisfying|| f§p||K = 1 and y&p(x) > 0 almost everywhere. It hageparation
exponen® € (0, 4] if there are positive constantsc’ such that

px{x € X :|fsp(x)| <y} <ct®,  vt>o0. (29)
Observe that condition (29) with= + is equivalent to
px{xe X :[fsp(X)| < vt} =0, Vo<t<l

Thatis,| fsp(x)| > yalmost everywhere. Thus, weakly separable distributions with sepaeagan
nentd = oo are exactly strictly separable distributions. Recall (e.g. Vapnik, 1998y&fTaylor et
al., 1998) thap is said to bestrictly separabléby #« with marginy > 0 if p is (weakly) separable
together with the requiremewfsp(x) > y almost everywhere.

¢From the first part of Definition 9, we know that for a separable digtabip, the set{x:
fsp(x) = 0} haspx-measure zero, hence

!mpx{xe X |fsp(x)| <t} =0.

The separation expone®imeasures the asymptotic behaviopafear the boundary of two classes.
It gives the convergence with a polynomial decay.
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Theorem 10 If p is separable and has separation expon@rt (0, +] with (29) valid, then for
every0 < 0 < 1, with confidence at leadt— 6, we have

R(sgn(fz)) < 2¢" + %mz/é) ¢)572 (Cy2) o2, (30)
wheree* is solved by
€ 3me
Iogf?\[( > ~ 5qie = log(d/2). (31)

q2q+3\/ 2(2¢/) 872y~ €2 Col2 4 2Ce

(a) If (23) is satisfied, with a constagtdepending oy we have

S
R (sgn(f,) §6<Iog(2/6)+(lr(])19m+logC) +C‘%>. (32)
(b) If (24) is satisfied, there holds
R (sgnf;)) < E{Iog% (C<5+1>s<9+2> msi1 4 Cs2 ms/zl+l> +C&2}. (33)

Proof Choosé = (5% )1/ (6+2)

1

ﬁ.

Sincey fsp(x) > 0 almost everywhere, we know that for almost every X, y = sgn(fsp)(x).

This meansf, = sgn( fsp) and thenfq = sgn(fsp). It follows that R (fc) = 0 andV (y, fk c(X)) =
\fsp(x

(1- )%

over,

> 0 and the functiorfy ¢ = £ fspe k. Then we haveg || oIz =

€ [0,1] almost everywhere. Therefore, we may t&ke= 1 in Proposition 8. More-

Z(fcc) _/Z(l_wsfp(x))jdp_/x(l_ fs;:(X)l)jdpx

This can be bounded by (29) as

[ fsp(X)[\ N
1- dpx < px{xe X :|fspX)| <t} <d(-) .
/{Xifsp(x)<t}( C ) dex <pxd | fsp)| <t} < (y)

It follows from the choice of that

t\® 1 2
DC) < (- — )82(C w2, 34
Then our conclusion follows from Proposition 8. [ |

In case (a), the bound (32) tells us to cho&euch that(logC)s/m — 0 andC — « as
m — oo, By (32) a reasonable choice of the regularization paraniteIC = m%, which yields
R (sgn(f,)) = O(1%™) in case (b),

when(24) is valid, C= mevsis — R (sgn(f,)) = O(m*e+%+es). (35)

The following is a typical example of separable distribution which is not striehasable. In
this example, the separation exponerfl is 1.
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Example 1 Let X=[—-1/2,1/2] and p be the Borel probability measure on Z such tpatis the
Lebesgue measure on X and

£(x) = 1, for —1/2<x<-1/4and1/4<x<1/2,
P71 —1, for —1/4<x<1/4

(a) If K is the linear polynomial kernel K,y) = x-y, then® (sgn(f;)) — R (fc) > 1/4.
(b) If K is the quadratic polynomial kernel (%,y) = (x-y)?, then with confidencg— ,

q(q+4)2411 (logm+logC +2log(2/8)) 16
R (sgrify)) < . S

Hence one should take C such th@gC/m — 0 and C— o as m— co.

Proof The first statement is trivial.

To see (b), we note that difk = 1 andk = 1/4. Also, £y = gg&z(b) = 1. Hencek =
1/(1+049-2). SinceHx = {ax?:ac R} and|ax|k = |a], AL(B,n) < 1/(2n). Then (23) holds
with s= 1 andc = 4q. By Proposition 8, we see that < q(q+4)2q+11(lo%ng)+Iog(2/ %),

Take the functionfsp(x) = x2 —1/16 € #H with || fpllk = 1. We see thagfsp(x) > 0 almost
everywhere. Moreover,

{xeX: [fsp(x)| <t} < vi-16a \/1+16‘}U{_¢1+16t _vi-18)

4 7 4 4 4
The measure of this set is bounded by®. Hence (29) holds witl® = 1, y= 1 andc = 8/2.
Then Theorem 10 gives the stated bound®dsgn( f;)). [

In this paper, for the sample error estimates we only use the (uniform) cgveuimbers in
C(X). Within the last a few years, the empirical covering numberg%ior ¢?), the leave-one-out
error or stability analysis (e.g. Vapnik, 1998; Bousquet and Elliss@éfi2; Zhang, 2004), and
some other advanced empirical process techniques such as the loeald&4er averages (van der
Vaart and Wellner, 1996; Bartlett, Bousquet and Mendelson, 20@refarences therein) and the
entropy integrals (van der Vaart and Wellner, 1996) have been gmatlo get better sample error
estimates. These techniques can be applied to various learning algoritheysarEhpowerful to
handle general hypothesis spaces even with large capacity.

In Zhang (2004) the leave-one-out technique was applied to improvaihgls error estimates
given in Bousquet and Ellisseeff (2002): the sample error has alkedependent bound)(%),

improving the bound)(%n) in Bousquet and Ellisseeff (2002); while the regularization e@(ﬁ)
depends oK andp. In particular, forg = 2 the bound (Zhang, 2004, Corollary 4.2) takes the form:

4ﬁc)2fien;‘&{f(f)+%|f|ﬁ} = (1+ %)2{@(@—1—%(&,)}. (36)

In Bartlett, Jordan and McAuliffe (2003) the empirical process techsigue used to improve
the sample error estimates for ERM. In particular, Theorem 12 there statesitia convex sef
of functions onX, the minimizerf of the empirical error ovef satisfies

£(f) < figfff(f)Jerax{s*, (Lngj(l@)l/(ZB)’%nfl/&}. (37)

E(E(f) < (1+
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HereK, ¢, 3 are constants, argf is solved by an inequality. The constdhts a bound for differ-
ences, andl is the Lipschitz constant for the logswith respect to a pseudometric & For more
details, see Bartlett, Jordan and McAuliffe (2003). The definitior8 @fidL together tell us that

[o(yrf(x1)) —@(y2f(x2))| <LB,  V(x1,y1) €Z,(x2,¥2) €Z, T € F. (38)

Because of our improvement for the bound of the random variaklgd (x)) given by the pro-
jection operator, for the algorithm (3) the error bounds we derive di@rbetter than existing results
when the kernel has small complexity. Let us confirm this for separaltiébdisons with separa-
tion exponent G< B < c and for kernels with polynomial complexity exponant 0 satisfying (24).
Recall thatD(C) = O(Cfﬁ'z). Takeq = 2.

Consider the estimate (36). This together with (34) tellzs us that the deriveditforE (E( f;) —

£(fg)) is at least of the ordeD(C) + SD(C) = O(C#72 + &2, By Lemma 5, the optimal bound
derived from (36) isO(m*ﬁ.Z). Thus, our bound (35) is better than (36) whea 8 < le

Turn to the estimate (37). Tak& to be the ball of radiu ZC@(C) of #Hx (the expected
smallest ball wherd lies), we find that the constahB in (38) should be at Ieam/ZCQB(C).

~ 1
This tells us that one term in the bound (37) for the sample error is am( m@((:)> =0(%32),

while the other two terms are more involved. Applying Lemma 5 again, we find teabdbond
derived from (37) is at Iea@(m‘%). So our bound (35) is better than (37) at least fer < ﬁ

Thus, our analysis with the help of the projection operator improves exigtiagl®unds when
the kernel has small complexity. Note that in (35), the valuesfof which the projection operator
gives an improvement are values corresponding to rapidly diminishindamization C = mP with
B > 1 being large).

For kernels with large complexity, refined empirical process techniqugsy&n der Vaart and
Wellner, 1996; Mendelson, 2002; Zhang, 2004; Bartlett, Jordan agrdulffe, 2003) should give
better bounds: the capacity of the hypothesis space may have more iefloretice sample error
than the bound of the random variabléy, f (x)), and the entropy integral is powerful to reduce this
influence. To find the range of this large complexity, one needs expliciaraysis for both the
sample error and regularization error. This is out of our scope. Itdvogi interesting to get better
error bounds by combining the ideas of empirical process techniqudbepdojection operator.

Problem 11 How much improvement can we get for the total error when we apply thjeqtion
operator to empirical process techniques?

Problem 12 Given8 > 0,s> 0, > 1, and 0 < 8 < 1, what is the largest numbex > 0 such
that R (sgn(f;)) = O(m~%) with confidencel — & whenever the distributiop is separable with
separation exponeiftand the kernel K satisfies (24)? What is the corresponding optimal cbbice
the regularization parameter C?

In particular, for Example 1 we have the following.

Conjecture 13 In Example 1, with confidende- 6 there holdsR (sgn(f;)) = O(%) by choos-
ing C=md.
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Consider the well known setting (Vapnik, 1998; Shawe-Taylor et al.81%%einwart, 2001;
Cristianini and Shawe-Taylor, 2000) of strictly separable distributions miginginy > 0. In this
case, Shawe-Taylor et al. (1998) shows that

R(s9r(1)) < = (I0g\((#, 2my/2) +10g(2/3)) (39)

with confidence 1 6 for m > 2/y wheneverf € # satisfiesy; f(x) >y. Here ¥ is a function

set, N\ [(F,2m,y/2) = sup N(F,t,y/2) and A\ (F,T,y/2) denotes the covering number of the set
fexem
{(f(t))2™ : f € F}in R?™ with the ¢~ metric. For a comparison of this covering number with that

in C(X), see Pontil (2003). o
In our analysis, we can takig c = 3 v fspe Hy. ThenM = ||V (y, fk c(X))[| = 0, and D(C) =

2Cy2 We see from Proposition 8 (a) that when (23) is satisfied, there Boldlg < ¢( '09(1/V)+|Ogm)s+log(l/6))

But the optimal boun®( m) is also valid for spaces with larger complexity, which can be seen from
(39) by the relation of the covering number{(F,2m,y/2) < A(F,y/2). See also Steinwart
(2001). We see the shortcoming of our approach for kernels with langglexity. This convinces
the interest of Problem 11 raised above.

3. Comparison of Errors

In this section we consider how to bound the misclassification error by tfisk. A systematic
study of this problem was done for convex loss functions by Zhangd(2@mhd for more general
loss functions by Bartlett, Jordan, and McAuliffe (2003). Using thesaltg, it can be shown that
for the loss functiorvy, there holds

W(R(san( 1) - R(f)) < E(F) — E(fy),

wherey : [0,1] — R, is a function defined in Bartlett, Jordan, and McAuliffe (2003) and can be

explicitly computed.
R(SQr( 1)) — R(fe) < c\/E(f) — E(fg). (40)

In fact, we have
Such a comparison of errors holds true even for a general convefuiostion, see Theorem 34 in
Appendix. The derived bound for the constanh (40) need not be optimal. In the following we
shall give an optimal estimate in a simpler form.

The constant we derive dependsaand is given by

_Ji if1<q<2
Cq_{2(q—1)/q, if q> 2. (41)

We can see thdlg < 2.

Theorem 14 Let f: X — R be measurable. Then

R(9(1)) ~ (o) < /Ca(E() ~ E(f)) < \/2(E(1) ~ (fq)).
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Proof By the definition, only points with sdrf)(x) # fc(x) are involved for the misclassification
error. Hence

R(sgn(f)) — R(fec) = /x | fo(X) X {sgnf)x)-£sgn fe)(x) 1 dPx- (42)
This in connection with the Schwartz inequality implies that
1/2
R(sgn(f)) - R(fc) < { /X |fp(X)IZX{sgnf)(x#sgqux)}dpx} :

Thus it is sufficient to show for thosec X with sgn(f)(x) # sgn(fq)(x),

[fo ()2 < Cq(E(F[x) — E(fg[x)). (43)
where forx € X, we have denoted

£(1):= | Valy. 00)dp(y}o. (44)

By the definition of the loss functiow;, we have

1+ fp(x 1—fo(x
£(1 = (1 10000 2 (1 p09)3 2 (5)
It follows that
00— fy(¥
E((-E(g= [ Fludu (46)
0
whereF (u) is the function (depending on the paramefigx)):
P =" 2Wqat ty00 0 - 2000wt uer

SinceF (u) is nondecreasing arfé(0) = 0, we see from (46) that when sdn(x) # sgn(fq)(X),
there holds

—f4(%)
E(f]x) — E(fq|x) 2/0 F(u)du= E(0|x) — E(fq|x) = 1— E(f4|x). 47)
o 1 (1 |10
2975 (1— X
E(fqlx) = : - (48)
{(1+ () V(@Y + (1~ o (x)) V(@D }
Therefore, (43) is valid (with = f,(x)) once the following inequality is verified:
2 2q—l 1_t2
t—gl— ( ) —> te[-1,1].
Cq {(1+t)V@D 4 (1_t)1/(q71)}q
This is the same as the inequality
2\ V(-1 ~1/(9-1) —t)" Y-
(1— é—q) < 1+ er(l ) L tel-11). (49)
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To prove (49), we use the Taylor expansion

o0 ) k—1
ay « Mei—o(@a—4)
(L+u)? = ( )u -y N2k ue(-11).
2\ T2 e
Witha = —-1/(g—1), we have
1/(q k—
(LB 1
Cq

and (all the odd power terms vanish)

2 =2 ki

& 1+/+Kk
Note that
k1 44k g
g > .
1+0+k ~—CK
This proves (49) and hence our conclusion. [ |

When R (fc) = 0, the estimate in Theorem 14 can be improved (Zhang 2004, Bartlett, Jordan
and McAuliffe 2003) to

R (sgn(f)) < £(f). (50)

In fact, ® (fc) = 0 implies| fp(x)| = 1 almost everywhere. This in connection with (48) and (47)
givesE( fyx) = 0 andE(f[x) > 1 when sgif )(x) # fc(x). Then (43) can be improved to the form
|fo(X)] < E(f|x). Hence (50) follows from (42).

Theorem 14 tells us that the misclassification error can be bounded Yyribke associated with
the loss functio/. So our next step is to study the convergence oftHatassifier with respect to
theV-risk E.

4. Bounding the Offset

If the offsetbis fixed in the scheme (3), the sample error can be bounded by stanganaant using
some measurements of the capacity of the RKHS. However, the offsettieffiae optimization
problem and even its boundedness can not be seen from the definitisrmakes our setting here
essentially different from the standard Tikhonov regularization schéaime difficulty of bounding
the offsetb has been realized in the literature (e.g. Steinwart, 2002; Bousquet argeEtfj2002).
In this paper we shall overcome this difficulty by means of special featiris® loss functiorv.
The difficulty raised by the offset can also be seen from the stability asglBsusquet and
Ellisseeff, 2002). As shown in Bousquet and Ellisseeff (2002), th&3Vhorm classifier without

the offset is uniformly stable, meaningthat  sufiV(y, fz(xX)) =V (y, fz(X))||Le < Bmwith B — 0
zeZMzeZ

asm— o, andZ' is the same az except that one element pis replaced by,
The SVM 1-norm classifier with the offset is not uniformly stable. To see ¥eschooseg € X
and sampleg = {(xo, i)}t withy; = 1fori=1,...,n+1,andy; = —1fori=n+2,...,2n+1.
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Take 7, = (x0,—1). As X are identical, one can see from the definition (9) that= 0 (since
Es(f7) = E,(b,+ f2(X0))). It follows that f, = 1 while f, = —1. Thus,|f, — fz| = 2 which does
not converge to zero as = 2n+ 1 tends to infinity. It is unknown whether tleenorm classifier is
uniformly stable forg > 1.

How to bound the offset is the main goal of this section. In Wu and Zhou4(Ra0direct
computation is used to realize this point tpe= 1. Here the index] > 1 makes a direct computation
very difficult, and we shall use two bounds to overcome this difficultyxBy(X, px) we mean that
x lies in the support of the measypg on X.

Lemma 15 Forany C> 0,me N andz € Z™, a minimizer of (9) satisfies

min f,(x) <1 and max f;(x)> -1 (52)

1<i<m 1<i<m

and a minimizer of (15) satisfies

inf fxc(x)<1 and sup fxc(x)>—1. (52)
xe(X,px) xe(X,px)

Proof Suppose a minimizer of (9%, satisfies := 121i<n fz(xi) > 1. Thenf;(x)— (r—1) > 1 for
<I<m

eachi. We claim that
yi =1, Vi=1,...,m

In fact, if the set := {i € {1,...,m} : y; = —1} is not empty, we have

1 1
(T = (r=1))= =5 (1+f06) = (r—=1))7 < =5 (14 f,(4)) = E(12),
Z\ 'z ; Z\N mg z zZ\ 'z
which is a contradiction to the definition df. Hence our claim is verified. From the claim we
see thatt,(f, — (r — 1)) = 0 = E,(f;). This tells us thatf, := f, — (r — 1) is a minimizer of (9)
satisfying the first inequality, hence both inequalities of (51).

In the same way, if a minimizer of (9, satisfiesr := 1rp_§x f,(x) < —1. Then we can see

<i<m

thaty; = —1 for eachi. HenceZ,(f,—r —1) = E,(f;) and f,:= f,—r — 1 is a minimizer of (9)
satisfying the second inequality and hence both inequalities of (51).
Therefore, we can always find a minimizer of (9) satisfying (51).

We prove the second statement in the same way. Suppese (I)I’(lf : ﬁgc(x) > 1 for a mini-
XE(X,Px

mizer fy c of (15). Thenfx c(x) — (r — 1) > 1 for almost everx e (X, px). Hence
- - q -
£ (fee—(=1) = [ (1+fect) = =1) P = ~1pdpx < E(fec).

As fk c is a minimizer of (15), the above equality must hold. It follows th&)” = —1|x) = O for
almost everyx € (X, px). HenceﬁK,C = ﬂgc — (r—1) is a minimizer of (15) satisfying the first
inequality and thereby both inequalities of (52).
Similarly, whenr :=  sup ﬂ@(x) < —1fora minimizerﬂgc of (15). ThenP(9 =1|x) =0
Xe(X,px)
for almost every € (X, px). HenceFy ¢ := fi c —r — 1 is a minimizer of (15) satisfying the second
inequality and thereby both inequalities of (52).
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Thus, (52) can always be realized by a minimizer of (15). |

In what follows we always choosk and fx c to satisfy (51) and (52), respectlvely
Lemma 15 yields bounds for th&-norm and offset foif, and fK C- Denoteb~ asbK,C.

Lemma 16 For any C> 0,me N, f c € Hy, andz € Z™, there hold
@) [Ifécllk < 2CD(C) <V2C, |bkc| <1+ f; clle-

(0) [|fecllo < 142k1/2CD(C) < 14+2kV2C, E(fkc) < E(fy) +D(C) < 1.
(©) Ibz| < 1+k| f; k-

Proof By the definition (15), we see from the choite= 0+ 0 that

D(C) = B(fc) ~ Blfe) + 5l Rl < 1- E(fy) (59

Then the first inequality in (a) follows.
Note that (52) gives

—-1< sup ?K,CSBK,CWLHFIZCHW
XE(X,px)

and N B N
bcc—[[feclle < inf fcc <1
x€(X,px)
Thus,|bkc| <1+ | ﬁzcnm. This proves the second inequality in (a).
Since the first inequality in (a) and (2) lead |tcﬁz7CHm < K\/ZCQD(C), we obtain| fic ¢l <

14-2||f; clle < 1+ 2k4/2CD(C). Hence the first inequality in (b) holds.

The second inequality in (b) is an easy consequence of (53).

The inequality in (c) follows from (51) in the same way as the proof of thersginequality in
(a). |

5. Convergence of the-Norm Soft Margin Classifier

In this section, we apply the ERM technique to analyze the convergenceatthssifier forg > 1.
The situation here is more complicated than thatferl. We need the following lemma concerning
g>1.

Lemma 17 For q > 1, there holds
0% =] <amaxixypndHx-yl,  WxyeR.
Ify € [-1,1], then
|(1-x9 —(1-y)?| < x—y|+g2% Hx—y|%  ¥xeR.
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Proof We only need to prove the first inequality for> y. This is trivial:
q q X a1 g-1
002 )% = [ aw? tdu< g Hx-y).
If y € [-1,1], then 1-y > 0 and the first inequality yields
|(1-x)9 —(1-y)?| < g(max{l—x1-yH% Lix—yl. (54)
Whenx > 2y — 1, we have
[(1-x9 = (1-9?]| <@ (1-y) " Hx—y] < @4¥ Hx—y].

Whenx < 2y—1, we have 1-x < 2(y—x) andx < 1. This in combination with ma§d —x,1—y} <
max{1—x,2} and (54) implies

(1-%1 = A= <a{(1-0)T+ 29 x—y| < 29 Hx—y|9+ g% |x—y].
This proves Lemma 17. [ |

The second part of Lemma 17 will be used in Section 6. The first part ears&d to verify
Proposition 4.

Proof of Proposition 4. It is trivial that D(C) > QN)(CN). To show the second inequality, apply the
firstinequality of Lemma 17 to the two numbers-¥fx c(x) and 1—ybk c. We see that

(1=yfec)T = (1—ybrc)? —a(l+|f )]+ b )™ c(X)].

Notice that] ﬂz (x)| < k|| cllk and by Lemma 16k c| <1+ K| i cllk- Hence

(fice) = E(be) — ka2 M (L+k| i cll) el
It follows that Whean cllk <K, we have

E(fkc)— E(fq) > Fo— kg9 (1 + KR)q_lk,

SinceZ, < 1, the definition (18) ok yieldsk < 1/(1+«k) < min{1,1/k}. Hence
D(C) > E(fkc) — E(fq) > Fo—KgdT K =K > K2

AsC >1/2, we conclude (17) in this case.
When|| cllk >, we also have

R’Z

Thus in both case we have verified (17).
Note tha = 0 if and only if Zo = 0. This means for somig}) € [—1,1], fq(x) = by, in probability.
By the definition offy, the last assertion of Proposition 4 follows. [ |
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The loss functiotV is not Lipschitz, but Lemma 17 enables us to derive a boundfaox f;)) —
‘E-(1(f2)) with confidence, as done for Lipschitz loss functions in Mukherjee, Rikid Poggio
(2002). Since the function( f,) changes and lies in a set of functions, we shall compare the error
with the empirical error for functions from a set

F:={n(f): f e Br+[—B,BJ}. (55)

HereBr = {f* € H : || f*||[x < R} and the constar® is a bound for the offset.

The following probability inequality was motivated by sample error estimates tstuare
loss (Barron 1990, Bartlett 1998, Cucker and Smale 2001, Lee, BaiéttVilliamson 1998) and
will be used in our estimates.

Lemma 18 Suppose a random variabfe satisfiesO < § <M, andz = (z){"; are independent
samples. Let i= E(E). Then for everg > 0and0 < a < 1, there holds

1cm ,
Probyezm {—H— m2i=18(2) > a\/E} < exp{—3azms} :

VH+E 8M

Proof As ¢ satisfieg¢ — p| < M, the one-side Bernstein inequality tells us that

p- L5 E () a2mit e
Prolyezm {W > G\/g} < eXp{_Z(GZ—F%MG\/m\/E) } .

Hereo? < E(&2) < ME(§) = Musince 0< & < M. Then we find that

1 1 4
o2+ éMcx\/LH—s\/E < Mp+ SM(p+g) < SM(pte).

This yields the desired inequality. |

Now we can turn to the error bound involving a function set. Lemma 17 yield#&tlosving
bounds concerning the loss functign

E(f) — E2(g)| < amax{ (1+ [ ]}a) 2, (1+ glle)® 2} £ gl (56)

and
(1)~ Z(9)] < amax{ (14| )® ", (14 glle) ™} I = Gl (57)

Lemma 19 Let ¥ be a subset of X) such that| f|l» < 1for each fe #. Then for everg > 0
and0 < a < 1, we have

E(f) — E,(F) ag 30%me
F’mdm{?ﬁfm = ‘W} < (7)ol - |-
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Proof Let{ fj}f:1 CFwithd=N (T, %) such that7 is covered by balls centered ftwith

radiusngs_l. Note thatf =V (y, f(x)) satisfies 0< & < (14 || f||)4 < 29 for f € #. Then for each
j, Lemma 18 tells

E(fj) — E(f)) 30°me
ProQEzm{WEG\@} gexp{— 8 }

For eachf € 7, there is somg such that| f — f||» < % This in connection with (56) and
(57) tells us thatZ,(f) — E,(f;)| and|E(f) — E(f;)| are both bounded bye. Hence

| E2() — E ()] |E(f) —E(f))]
TR <aye and WSG\@

The latter implies that/E(f;) +& < 2,/ E(f) +¢. Therefore,

PrOQGZm{f‘e“f Z(0) re 240(\/§}§J;Prob{ TR Za\/E}

which is bounded by-exp{—%:g}. [

Take F to be the set (55). The following covering number estimate will be used.

Lemma 20 Let ¥ be given by (55) with R kK and B= 1+ KR Its covering number in (X) can
be bounded as follows:

n
NF <A (55). >0
Proof It follows from the fact||m(f) — 1(g) || < ||f — || that
The latter is bounded bjf(k + £) %3 + 1} (Br, 3) since?® < (k+ )& and
I(f*4bf) = (9" +bg) [l < | " — 9"l + |bF — bg.

Note that an%z-covering of B is the same as a%-covering ofBr. Then our conclusion follows
from Definition 6. |
We are in a position to state our main result on the error analysis. Foacail (25).
Theorem 21 Let fkc € Hi, M > |V (y, fk c(X))]|, and0 < B < 1. For everye > 0, we have
E(n(fz)) — E(fq) < (1+B) (e+D(C))

with confidence at leadt— F (¢) where F: R, — R is defined by

: me? B(e+D(C))*? 3m?(D(C) +¢)°
F(S) = eXp{—m}‘l‘N(W> exp{— ZQ+9(A+£) } (58)

withA:= D(C) + E(fq) andZ := /2C(A+€) (A + OueE).
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Proof Lete > 0. We prove our conclusion in three steps.

Step l:EstimateZ;(fk c) — E(fkc).

Consider the random variable= V (y, fx c(x)) with 0 < & < M. If M > 0, sinced?(§) <
ME(fkc) <M(D(C)+E(fg)), by the one-side Bernstein inequality we obtait fk ¢c) — E(fk c) <
€ with confidence at least

me? me?
ool o) >4 s

If M =0, then§ = 0 almost everywhere. Hendg( fx c) — E(fk c) = 0 with probability 1. Thus,
in both cases, there exidtls € Z™ with measure at Ieast—lexp{—ﬁim} such thatz;(fk c) —
E(fkc) < Bue wheneverz € U;.
Step 2:EstimateZ(1( f;)) — E,(T(f)).
Let ¥ be given by (55) withR = \/2C(A+6ume) andB = 1+ KR. By Proposition 4R >
2CD(C) > K. Applying Lemma 19 toF with € := D(C) +¢& > 0 anda = g €/ (E+E(fg) €
(0,1/8], we have

E(f) - B(f) <davE\JE(f) - £(fg) 18+ E(f),  VieF (59)

for z € U, whereUs is a subset of ™ with measure at least

e e A

In the above inequality we have used Lemma 20 to bound the covering number.
Forz e U;NU,, we have

1. 1. 1 s
Itz Ik < Eo(fke) +f\|fK,cHﬁ < E(fkc)+6Ome+ fllfK,cHﬁ

which equals taD(C) +6ue+ E( fq) = A+6ume. Itfollows that|| f; ||k <R. By Lemma 16|b,| <B.
This meanst(f,) € F and (59) is valid forf = 11(f;).

Step 3:BoundE(1( f,)) — E(fq) using (14).

Leta andg€ be the same as in Step 2. Foe U1 Uy, both E,(fk c) — E(fkc) < Bme < € and
(59) with f = 11( f;) hold true. Then (14) tells us that

E(M(1,)) — E(fq) < 4aVE\ [ (E((1)) — E(fq) +E+ E(fg) +£.
Denoter := E(1(f;)) — E(fq) + &+ E(fq) > 0, we see that
r <&+ E(fg) +H4avVEVT +E.

It follows that

VI < 20VE+ \/4a2§+2§+ E(fq)-

Hence

E(M(f,)) — E(fq) =1 — (E+E(fq)) < &+ 80%E + 4ot /402 + 2+ E(fg) E.
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Putting the choice oft into above, we find that

.2 g [ & B2 £(fo)
E(mtz)) ~£(fg) < 8+8(§+7Z(fq))+7\/§+f(fq)\/16(§+ Z(tqy T2t 3

which is bounded byl + B)€ = (1+B)(e+ D(C)).
Finally, noting that the measure 0f (U is at least 1- F(¢), the proof is finished. |

Observe that the functioR is strictly decreasing anié(0) > 1,8Iim F(g) = 0. Hence for every

0 < b < 1 there exists a unique numbker 0 satisfyingF (€) = 8. Also, for a fixede > 0,F (g) < d
for sufficiently largem, sinceF (€) can be written ag™+ cb™ with 0 < a,b < 1. Therefore, Theorem
21 can be restated in the following form.

Corollary 22 Let F be given in Theorem 21. For evely o < 1, defineg(d,m,C, 3) > 0 to be the
unique solution to the equation(E) = &. Then with confidence at leakt- 8, (20) holds. Moreover,
lim £(8,m,C,B) =0.

Now we can prove the statements we made in Section 2 for the deterministic case.

Proof of Proposition 8. Takef3 = 1. SinceR® (f;) =0, we know thatfy = fc, E(fq) = 0 and
A= D(C). ThenZ < /2C(D(C) + 6me)/D(C) +¢€ and

B(e+D(C))¥2 :
(#29) <x{re)

The function valud-(€) can be bounded by

ol -gmera |+ (@) o 5)

4Mlog(2/d)
m

The first term above is bounded By2 whene >
0/2 if € > €*. Therefore

+ D(C). The second term is at most

e(d,mC,B) < max{ 4|\/IIorgr11(2/6) +

D). .
and (26) follows from Theorem 21.

(a) When (23) holds, noting that the left side of (27) is strictly decreasing easy to check
that

g < 2q+9{1+c((q+4) log 8)5} (logm- log(CD(C)) +10g(CB))° + log(2/3)

m

This yields the stated bound feft in the case (a).
(b) If (24) is true, then the function defined by

= (@P(2CD(C)? + (2ce)¥?  3me
F(e):=c " ~ 5479
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satisfies (¢*) > log(5/2). SinceF is a decreasing functios? < £* whenevelF (£*) < log(5/2).
If £ > rm- Y/t (2cD(C))¥ > 1og 2 with

r > 298RSt 4 gt 10c/(5th) /10g 2 (60)
then
(2CD(C)*?  mer  rms/(HD s 2 c(q2at4)S2a+8
o(q4)® - — < (2CD(C))m2logsq —————— - —15.
(&%) 2418 = 2at8 5 | (rlog(2/5))5™*

Sincer > q24+10cY/(s+1) /10g 2, according to Proposition 4, this can be bounded by

r 2( 1 r. o 1 9
/st §/(25t2) |gqs) 2L« = g/(st) 1902 < Zlog =
78 (2CD(C)) Iogé{ 2} < Zqrek log 5 < 2Iog 5

Here we have used the conditiorr 298K —S/(st1),
In the same way, & > rm~2/(s+2)(2C)%/(s+2) log £ with

r > 299 4 g49+5¢%/(5+2) /10g 2, (61)
we have foIC > 1/2,
2c\%? mEr 1,3
g+4sS [ == __ - <= =
c(q29") <€*> PTRE S 2Iog2.
Combining the above two bounds, we obtain the desired estimate (283 dattermined by the
two conditions (60) and (61). The proof of Proposition 8 is complete. [ |

In the general case, the following bounds hold.

Corollary 23 For every0 < o < 1, with confidence at leadt— o there holds

2q+1<1+m/2ci>(c>>q/2 log(2/3)

v/m

E(T(f,)) — E(fy) §2max{ ,s*}+2?o(c:),

wheree* is the solution to the equation

(62)

3/2 2
Iogf7\[< € > 3me o)

q4Q+2@ ~ a5 — Iogé.

[ fccllo < 1+ 2k1/2CD(C) and we can take

M = 29(1+K/2CD(C))%. Also, A = D(C) + E(fy) < 1. It follows thats < v/2C(A+¢) <
Vv2C(1+e).

Since’E(m(f;)) < 29, we only need to consider the range 2% to bounde(d,m,C,B). In this

range,
B(e+ D(C))¥2 e/
()= (wwm) ‘
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ThenF (¢) can be bounded by

L AN yuc (S P
4Q+1(1+K\/%)q q4%+2y/2C 49+5 [

ThusF(g) < &if

24t1(1+4 K4/ 2CD(C))¥2, /log(2/d
£ > max ( (©)) g(/)js*
vm
wheree* is the solution to the equation (62). This together with Theorem 21 yields thedes
estimate. |

The bound for the sample error derived in Corollary 23 may be furtherausgr by the well
developed empirical process techniques in the literature. We shall dibisisésewhere.

The total error (14) consists of two parts. We shall not discuss thégiag<f further improv-
ing the sample error bound here, because it is of the same importance tetanddhe regulariza-
tion error. This becomes more important when not much estimate is available fieaghlarization
error. In the previous sections, we could comptgC) explicitly only for special cases. Most of
the time,p is not strictly separable, even not weakly separable. Hence it is destmbstimate
D(C) explicitly for general distributions. In the following we shall chodge: = i‘VK,C and estimate
D(C).

6. Error Analysis by Approximation in LY Spaces

The main result on the convergence analysis given in Section 5 enaliteharge some nice obser-
vations. These follow from facts on approximatiorLihspaces.

Lemma24 If 1< g< 2, then
(1+uwd <1+|uf+qu, VueR.

Proof Set the continuous functiof(u) := 1+ |u|9+qu— (14 u)$. Thenf(0) = 0.
Since 0< q—1< 1, foru> 0 we have

f'(uy=q(1+ut—(14+u4?) >0

Hencef(u) > 0 foru> 0.
For—1 < u< 0, we see that

Fu)=g(1- (~u% = (1+u)%) =g (1 [u" — (1~ [u)) <0.

Hencef(u) >0for—-1<u<O0.
Finally, whenu < —1, there holds

f'(uy=q(1-(-w**) <o.

Therefore, we also havgu) > f(—1) > 0 foru< —1.
Thusf(u) > 0 on the whole real line and Lemma 24 is proved. |
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Theorem 25 Let f: X — R be measurable. Then
q .
||f_fCI|||_gX7 If1<q§2,

E(f)—E(fg) < B i 1 :
Q2" Y|t~ fallg, (272 +11 T~ fallly}), fa>2
Proof Since|fq(x)| < 1, by the second inequality of Lemma 17, for each X we have

E(f]x) — Z(fglx) =/Y(l—yf(x))ci—(1—yfq(X))idp(y|X)
< gATHF (%) — fq(x)| + 029 (x) — fq(x)[9.

It follows that

E(f) = (fq) = [ E(1%) — E(Tgkdpx < 0¥ f — folly, +02" 2~ Tl

Then the inequality for the casg> 2 follows from the Hlder inequality.
Turn to the case & q < 2. Itis sufficient to show that for eacte X,

E(F1%) = E(folX) < [F() = f(9[*
The definition (10) offq tells us that

2511+ (X))
(@ Tp00) @D 4 (1 fp() 7@ T} T

(14 fq(x)%* =

and
29711~ fo(x)

(= b = @0 1 @ Ry VeI
These expressions in connection with (45) imply
(1+ ()T (1~ fq(x)9* (1 ()T (1+ fq(x) 9
(1+fq00)9 1+ (1= ()9 (14 fg(x) 4+ (1— fg(x))9*

and together with (48)

E(f]x) =

2(1— f(x)% 1L+ fq(x)9?
(14 fq(x)a 1+ (1 fq(x))a-t
Thus (63) follows from the following inequality (by takirig= f(x) and® = f4(x)):

E(fqlx) =

(1+t)3(1-0)91t (1-t)3(1+0)91t
(1+8)4 1+ (1) % (14 8)9-14(1-0)4
1-0)41(1+0)%
—2(£+9)3_1+((1+_ )e)q—l <lt—-99 WVteR.0e(-1,1).

What is left is to verify the inequality (64). Sincel < 8 < 1, we have

g _ t—8
>+ =(1-62)91(1+0) (1+m

1+t

1+l (1-0)%t=(1-0%)"1(1+0) <m
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By Lemma 24 withu= (t —8)/(1+ 0), we see that

t—0
1+6

i< @t (1] o el D).

1 t-8
917%)
Combining the above two estimates, we obtain

(1+0)31-9) 1+ (1-1)(1+0)Tt<21-08%)% |t -0 {(1- 9)d-14 (l+6)q_l} .

In the same way, by Lemma 24 with= —(t — 0)/(1—8), we have

t—96
1-6

(1—tﬁ(1+ew—1§(1—e%q4(1—e)(1+‘

This proves our claim (64), thereby Theorem 25. |

Recall theK-functional given by (19).

Theorem 26 For each C> 0, there holds

1
fq, =—).
q’zﬂ

Proof The case k g < 2is an easy consequence of Theorem 25.
Turn to the casg > 2. The special choicé = 0+ 0 € H and the fact| fg,||LgX < 1 tell us that
for anyt > 0,

D(C) < K

o : q—1/o0-1 . *12
K(fg )= inf {2 M@ 1)~ follg, %}
It-fall g <1

According to Theorem 25, fof € Hy with || f — fq||LgX <1, we have

E(f) — E(fg) <2712+ 1) f — follg -

Thus,
= — — || f* < -
D(C) = int {£(0)~£(1o)+ Ik | < K(fa )
and the proof of Theorem 26 is complete. [ |

We can now derive several observations from Theorem 26. o

The first observation says that the S\¢Mlassifier converges whefg lies in the closure of/k
in Lg, . In particular, for any Borel probability measupethis is always the case K is a universal
kernel sinceC(X) is dense irL.g, .

Corollary 27 If fq lies in the closure of{k in Lgx, then for eveng > 0 and0 < & < 1, there exist
C: > 0, mp € N and a sequencewith rLan Cn = o such that

Probyezm {R (sgn(fz)) — R(fc) <€} >1-8,  ¥Ym>my, G <C<Cp.
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Proof Sincefq lies in the closure offx in L, for everye > O there is somd, = f; +be € H
such thag29(29-1 + 1) f — fallg, < £2/16. TakeC, = 8||f;||Z /2. Then for amyC > C;, we have

L | f2]|%2 < €2/16. Theorem 26 tells us tha(C) < £2/8.

Takemy such that
291(1 4 Kk/2C; )2, /log(2/3) _ €2
Vo -8
and 5 . 5
€ 3mgpe
oo (e )~ e <09

Also, we choos€,, such that

2011+ ky/2C) 2/ I0g(2/8) _ &

<

v/m 8
and
log N e? — 3me* <log—=
X\ gy, )~ as =297
Then by Corollary 5.2¢(8,m,C,3) < % whenm > my andC; < C < Cy,,. Together with Theorem
14, our conclusion is proved. |

Our second observation from Theorem 26 concerns nonuniviesaéls which nonetheless
ensures the convergence of the S\éMlassifier. The point here is thaf is not dense irc(X),
but after adding the offset the spa®f becomes dense.

Example 2 Let K be a Mercer kernel on X% [0, 1]:

K(x,y) = (X 1'7
(%Y) J;aj(xy)

where J is a subset df, a; > 0 for each je J, and 5 aj < «. Note that this kernel satisfies
jed

Ko(y) =0, hence {0) = 0for all f € #c. Hence the spacg is not dense in €X) and K is not

an universal kernel. But ify % = oo, then# is dense in €X) (Zhou 2003a) and hence irfiL
jed

Therefore, the SVM g-classifier associated with the (identical) kernehierges.

Remark 28 In Section 4 and the proof of Theorem 21, we have shown how theionffsetces the
sample error. Proposition 4 and Example 2 tell that it may also influenceypipeoximation error.
However, our analysis in the following two sections will not focus on this paidtiamay be an
interesting topic.

In practical applications, one can use varying kernels for (3).

Definition 29 Let{Kq}4en be a sequence of Mercer kernels on X. We say that the SVM g-classifier
associated with the kernelKy} converges if for a sequend€m}men Of positive numbers, , f
defined by (3) with K= K4 and C= C,, satisfies the following:
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For every Borel probability measupeonZ, and0 < d < 1, € > 0, for sufficiently larged there
is someary € N such that

Probyezm {R (sgn(fz)) — R(fc) <€} >1-8,  Ym>nmy.

For a universal kernd{, one may takdy to be identicallyK and the convergence holds. But
the kernels could change such as the polynomial kernels (Boser, GuybRapnik, 1992). Our
third observation from Theorem 26 is to confirm the convergence of Yid §-classifiers with
these kernels.

Proposition 30 For any 1 < g < o,n € N and X C R", the SVM g-classifier associated with
{Ka}§_;, the polynomial kernelsd(x,y) = (1+x-y)9, converges.

Proposition 30 is a consequence of a quantitative result below.

Let Py be the space of all polynomials of degree at nibslt is a RKHS #, with the Mercer
kernelKg(x,y) = (1+x-y)9. The rich knowledge from approximation theory tells us that for an
arbitrary Borel probability measure afy there is a sequence of polynomiglgy € Py}g_; such
thatdILrPo | fq— deLgx = 0. The rate of this convergence depends on the regularity of the function
fq (hence the functiori,) and the marginal distributiopy. With this in hand, we can now state the
result on the convergence of theclassifier with polynomial kernely.

Corollary 31 Let X C R", andp be an arbitrary Borel probability measure on Z. LetdN and

Ka(x,Y) = (1+x-y)9 be the polynomial kernel. SEX|| := sup|x|. Let{pq € Py}5_, satisfy & :=
xeX

|| fq — deLgX — 0 (as d— «). Set N:= (n+d)!/(nld!)+1and0< o < % Then there exists

Myc € N such that for > my ¢ and C= ", for every0 < & < 1, with confidencd — 4 there holds

29+5(Nlog (2))*(1+|||2)ad/8

| Palll
me/2

R(sgn(2)) — R (fe) < VAT /Ea+ +

I8

1
ma
Proof Takep] = pqg with zero offset in th&k-functional. Then by Theorem 26,

D(C) < K(fq =) < (2141 L a2
(C) < K( qa%)_q ( + )Ed+z||pd||}<d-

The covering numbers of the finite dimensional spRcée.g. Cucker and Zhou, 2004) and (22)
give us the estimate:

1./2 \"
< =
A <+ ) (241)
whereN — 1= (n+d)!/(nld!) is the dimension of the spa¢Q(R"). Also, K = /||Kd|le < (1+

IX[12)/2.
TakeC = m°. By Corollary 23, solving the equation (62) yields

(215N -+ log(k + £) (logm-+log(2/8)) "> 472, [log(2)
Vﬁﬁ + |n%*%
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which is bounded by %9, /NIog(%)KQ/Zm%‘% for m> my.. Heremy is an integer depending

onq,o (but not onm, d or 3). Then for eachm > my 4, with confidence 1- & the desired estimate
holds true. |

Remark 32 Note that R is a finite dimension space. Thus the nofm$k, and|| - HLgx are equiv-

alent for a fixed d whepy is non-degenerate. It would be interesting to compare the rjjgig,
with || pHLgX for p € Py as d tends to infinity.

Proof of Proposition 30. For everye > 0, there exists som € N such that, /G29~1/Eq < &/2 for

everyd > do. Then by Corollary 31 we can find somg s < my € N such tham(]0/2|| Pdllky, < €/4
w 1

and 25(Nlog(2/8))"*(1+ || X||2)4¥8mF ~* < /4. Then for anymn > my we haveR (sgn( f,)) —

R (fc) < € with confidence - 3. This proves Proposition 30. [

7. Rate of Convergence for theg-Norm Soft Margin Classifier

Corollary 23 and Theorem 26 enable us to get the convergence ratef8VM g-classifier. The
rate depends on the-functional X (fg,t). It can be characterized by the quantity (Smale and Zhou
2003; Zhou 2003b)

la(@R):=inf {llg—flg, }- (65)
[tk <R
Define
J (f R) - (IQ(fQ7R))q7 |f1<q§27
aae 291201+ 1)14(fq,R), if g> 2.

Then the following corollary holds true.
Corollary 33 For any t> 0 there holds
< .
K(fq,t) < Inf {Jg(fq,R) +tR}

One may choose approprid®do estimate the convergence ratefoffy,t), which together with
Corollary 23 gives the convergence rate of theisk and a strategy of choosing the regularization
parameteC. In general, the choice d® depends on the regularity df and the kerneK. Let us
demonstrate this by examples.

In what follows letX ¢ R" have Lipschitz boundary anplbe a probability measure such that
dpx = dxis the Lebesgue measure. Considet 2 and thusfy = f,. We use the approximation
error studied in Smale and Zhou (2003) (see also Niyogi and Girosbjfe8related discussion):

I2(0.R):= " inf {llg—T"ll.=}

¥k <R

to bound the ternfx( o, R). With the choicebs = 0 we obtain
l2(fo,R) < 13(fo, R).

Note that we disregard the influence of the offset here and thus thee@denot be optimal.
The first example includes spline kernels (Wahba 1990).
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Example 3 Let X C R" and K be a Mercer kernel such thaf is the Sobolev space"tX) with
r >n/2.If f, lies in the Sobolev space®X) with 0 < s<r, then

\/W Cn/(4r+3n) B
szmzum=0< Jm e +0(cr ).

Thus, C should be chosen such thatGo, C/m — 0 as m— oo.

Proof It was shown in Smale and Zhou (2003, Theorem 3.1) that far @< 1, 15(f5,R) =

O(R¥01-9) if and only if f, lies in the interpolation spac@ 2 , #)e. It is well known that

HS(X) C (L2, H"(X))s/re for 0 < s<r. Here# = H'(X) anddpx = dx Therefore, the assump-
tion f, € H3(X) tells us thatf, € (Lgx,}&)s/m. Hence there holds

la(fp, R) < 13(fp, R) < CpR™¥(9
for some constart,. ChooseR = C{ ~9/"Cl/=9/2" o obtain

1 2 R*_3 2(r—s)/r ~—s/r
—) < — <= )
K(fp, 2C) < (I2(fp,R))“ + < = 2Cp C
Using the well known covering number estimates for Sobolev spaces

n/r
bgﬂﬂBmﬂ)SCr<%>

and solving the equation (62), we see that

logk +logm+logC +log(2/3) MY (4r+3n)
* 6 6+3n/(4r) /~
g2 \/ m + 2B 2/ (@ran)

This proves the conclusion. |

Example 4 Leto > 0,s> 0 and K be the Gaussian kernelKy) = exp{—"‘;—g"z} .

(a) If f, lies in the interpolation spac(&l.zx,}&)evm for some0 < 8 < 1, that is, K (fp,t) < Cpt®
for some constantd;then for any0 < o < 1, with confidencd — 9, there holds

Z(m(ty)) — E(fp) = O ( C+t E'}ﬁ’m)m) +o(c—e).

This implies the parameter C should be taken to satisfy @ and C/m — 0 as m— co.

An asymptotic optimal choice is€ O(m¥/(1+29))_ With this choice, the convergence rate is
O(m~®/(1+28))

(b) If fo € H3(X) with s> 0, then for any0 < & < 1, with confidencd — 8, we have

Z(n(f;)) —E(f)) =0 ( S il/?m)nH) +0((logc)~¥2).

An asymptotically optimal choice is€0 (Wn‘m)s) which gives the convergence raté(@gm)—%/2).
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Proof Solving the equation (62) with the covering number estimate (23) yields

i v/(1+c¢)(logC +logm)n+1
£=0 .
vm
Then the statement in (a) follows easily from Corollary 23, Theorem 21Camdllary 33.

To see the conclusion in (b), we notice that the assumgtj@nHS(X) provides the approxima-
tion error estimates (Smale and Zhou, 2003; Zhou, 2003b)

I2(fp, R) < 15(fp,R) < Cs(logR)~¥*

for everyR > Cs, whereCs is a constant depending eno, n and the Sobolev norm df,. Choose
R=/2C (logC)~* to obtain

K(fp. ) < (12(1p,R)?+ o < (25C2-+ 1(logC) 2.

Then the desired bound follows from Theorem 26 and the above eswblisiund foie*. [ |

It was shown in Smale and Zhou (2003) that for the Gaussian kernelampe 4,15(9,R) =
O(R %) with € > 0 only if g is C*. Hence logarithmic convergence rate is expected for a Sobolev
function f,. However, in practice, one often chooses the different variaocesSthe Gaussian
kernel according to the different sample simeWith this flexibility, the regularization error can be
improved greatly and polynomial convergence rates are possible.
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Appendix A. Error Comparison for a General Loss Function

In this appendix for a general convex loss function we bound the sxueslassification error by
the exces¥-risk. Here the loss function takes the form

VY, f() = ey f(x)

for a univariate functiop: R — R,..
For eachx € X, we denote

E(1 = | V% F(0)dp(y). (66)
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thenE(f|x) = Q(n(x), f(x)). HereQ: [0,1] x (RU{+x»}) — R, is given by

andn : X — R is defined byn(x) := P(9" = 1|x). Set

fo(n) == arg,_min Q(n, f).

Thenf‘\)’ (x) = f5(n(x)). The main result of Zhang (2004) can be stated as follows.

Theorem A Let@be convex. Assumg(h) > 0whenn > 0.5. Assume there exists€0and s> 1
such that for alln € [0, 1],

0.5—n[*<c*(Q(n,0)—Q(n, fe(n))), (67)

then for any measurable functior{x):

R (sgr(1) ~ R (1) < 2c(£(1) —£(1})) ",

Further analysis was made by Bartlett, Jordan and McAuliffe (2003)eXxample, it was proved
in Bartlett, Jordan and McAuliffe (2003, Theorem 6) that for a conugction, f(’;(n) > 0 for any
n > 0.5 if and only if @ is differentiable at 0 an@/(0) < 0. Borrowing some ideas from Bartlett,
Jordan and McAuliffe (2003), we can derive a simple criterion for thedd@mn (67) withs = 2.
The existence of’(0) means that the functiog (x) is well defined in a neighborhood of 0 and is
differentiable at 0. Note that the convexity @fmplies@’(0) > 0.

Theorem 34 Letg: R — R, be a convex function such thgt(0) exists. Ifg(0) < 0andg’(0) > 0,
then (67) holds for s- 2. Hence for any measurable function f:

R (sgrif)) — R(fo) < 20,/ E (1) — E(1Y).

Proof By the definition ofg’(0), there exists some/2 > ¢y > 0 such that

w_qj/(o)‘g@, Vf e [—co, Col.

This implies

¢'(0)
2

#(0)+ @ (0 - T,
If n > 1/2, then for 0< f < ¢y,

Q
of

I <@(f) <@g0)+¢"(0)f +

(N, £) =ng(f) — (1-m@(~f) < (20— 1)F(0) +¢'(0) +@f'

Thus for 0< f <A, := min{%(n —1),co}, we have

2200 < 21— 10+ 39O -3 < T

1172



SVM SOFT MARGIN CLASSIFIERS

Therefore as a function of the variableQ(n, f) is strictly decreasing on the intervl, A,]. But
fo(n) > O/is its minimal point, hence

Q(N.0) - QM. f5(m) > Q1.0) - Qn.8y) > - T 00— Dy,

Whenﬁ(n —$) > co, we havely, = ¢y > 2¢o(n — 3). Hence

~¢(0) } 1

—¢@(0) 1,
g0 2"

Q(n,0)~Q(n, fg(n)) = —3

min{Zco,

That is, (67) holds witls= 2 and

(Vo) [ 1
C‘max{ —¢0) ' —cv<0>co}‘

The proof forn < 1/2 is the same by estimating the upper bounc%%(fn, f)for f <O. |

Turn to the special loss function =V given in (6) byq(t) = (1— t)i. Applying Theorem 34,
we see that the functiopsatisfiesp' (0) = —q < 0 and@’(0) = q(q— 1) > 0. This verifies (40) and
the constant can be obtained from the proof of Theorem 34.
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