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Abstract
The purpose of this paper is to provide a PAC error analysis for theq-norm soft margin classifier,
a support vector machine classification algorithm. It consists of two parts: regularization error
and sample error. While many techniques are available for treating the sample error, much less
is known for the regularization error and the correspondingapproximation error for reproducing
kernel Hilbert spaces. We are mainly concerned about the regularization error. It is estimated for
general distributions by aK-functional in weightedLq spaces. For weakly separable distributions
(i.e., the margin may be zero) satisfactory convergence rates are provided by means of separating
functions. A projection operator is introduced, which leads to better sample error estimates espe-
cially for small complexity kernels. The misclassificationerror is bounded by theV-risk associated
with a general class of loss functionsV. The difficulty of bounding the offset is overcome. Poly-
nomial kernels and Gaussian kernels are used to demonstratethe main results. The choice of the
regularization parameter plays an important role in our analysis.

Keywords: support vector machine classification, misclassification error, q-norm soft margin
classifier, regularization error, approximation error

1. Introduction

In this paper we study support vector machine (SVM) classification algorithms and investigate the
SVM q-norm soft margin classifier with 1< q < ∞. Our purpose is to provide an error analysis for
this algorithm in the PAC framework.

Let (X,d) be a compact metric space andY = {1,−1}. A binary classifierf : X →{1,−1} is a
function fromX to Y which divides the input spaceX into two classes.

Let ρ be a probability distribution onZ := X ×Y and (X ,Y ) be the corresponding random
variable. Themisclassification errorfor a classifierf : X →Y is defined to be the probability of the
event{ f (X ) 6= Y }:

R ( f ) := Prob{ f (X ) 6= Y } =
Z

X
P(Y 6= f (x)|x)dρX(x). (1)
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HereρX is the marginal distribution onX andP(·|x) is the conditional probability measure given
X = x.

The SVMq-norm soft margin classifier (Cortes and Vapnik, 1995; Vapnik, 1998) isconstructed
from samples and depends on a reproducing kernel Hilbert space associated with a Mercer kernel.

Let K : X×X → R be continuous, symmetric and positive semidefinite, i.e., for any finite set of
distinct points{x1, · · · ,x`} ⊂ X, the matrix(K(xi ,x j))

`
i, j=1 is positive semidefinite. Such a kernel is

called aMercer kernel.
The Reproducing Kernel Hilbert Space(RKHS) HK associated with the kernelK is defined

(Aronszajn, 1950) to be the closure of the linear span of the set of functions{Kx := K(x, ·) : x∈ X}
with the inner product〈·, ·〉HK

= 〈·, ·〉K satisfying〈Kx,Ky〉K = K(x,y) and

〈Kx,g〉K = g(x), ∀x∈ X,g∈ HK .

DenoteC(X) as the space of continuous functions onX with the norm‖ · ‖∞. Let κ :=
√
‖K‖∞.

Then the above reproducing property tells us that

‖g‖∞ ≤ κ‖g‖K , ∀g∈ HK . (2)

DefineH K := HK +R. For a functionf = f1 +b with f1 ∈ HK andb∈ R, we denotef ∗ = f1
andbf = b∈ R. The constant termb is called theoffset. For a functionf : X → R, the sign function
is defined as sgn( f )(x) = 1 if f (x) ≥ 0 and sgn( f )(x) = −1 if f (x) < 0.

Now theSVM q-norm soft margin classifier(SVM q-classifier) associated with the Mercer ker-
nelK is defined as sgn( fz), wherefz is a minimizer of the following optimization problem involving
a set of random samplesz = (xi ,yi)

m
i=1 ∈ Zm independently drawn according toρ:

fz := arg min
f∈H K

1
2
‖ f ∗‖2

K +
C
m

m

∑
i=1

ξq
i ,

subject to yi f (xi) ≥ 1−ξi , andξi ≥ 0 for i = 1, . . . ,m.

(3)

HereC is a constant which depends onm: C = C(m), and often lim
m→∞

C(m) = ∞.

Throughout the paper, we assume 1< q < ∞, m∈ N, C > 0, andz = (xi ,yi)
m
i=1 are random

samples independently drawn according toρ. Our target is to understand how sgn( fz) converges
(with respect to the misclassification error) to the best classifier, the Bayesrule, asm and hence
C(m) tend to infinity. Recall the regression function ofρ:

fρ(x) =
Z

Y
ydρ(y|x) = P(Y = 1|x)−P(Y = −1|x), x∈ X. (4)

Then theBayes ruleis given (e.g. Devroye, L. Gÿorfi and G. Lugosi, 1997) by the sign of the
regression functionfc := sgn( fρ). Estimating the excess misclassification error

R (sgn( fz))−R ( fc) (5)

for the classification algorithm (3) is our goal. In particular, we try to understand how the choice of
the regularization parameterC affects the error.

To investigate the error bounds for general kernels, we rewrite (3) asa regularization scheme.
Define the loss functionV = Vq as

V(y, f (x)) := (1−y f(x))q
+ = |y− f (x)|qχ{y f(x)≤1}, (6)
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where(t)+ = max{0, t}. The correspondingV-risk is

E( f ) := E(V(y, f (x))) =
Z

Z
V(y, f (x))dρ(x,y). (7)

If we set the empirical error as

Ez( f ) :=
1
m

m

∑
i=1

V(yi , f (xi)) =
1
m

m

∑
i=1

(1−yi f (xi))
q
+ , (8)

then the scheme (3) can be written as (see Evgeniou, Pontil and Poggio, 2000)

fz = arg min
f∈H K

{
Ez( f )+

1
2C

‖ f ∗‖2
K

}
. (9)

Notice that whenH K is replaced byHK , the scheme (9) is exactly the Tikhonov regularization
scheme (Tikhonov and Arsenin, 1977) associated with the loss functionV. So one may hope that
the method for analyzing regularization schemes can be applied.

The definitions of theV-risk (7) and the empirical error (8) tell us that for a functionf = f ∗+b∈
H K , the random variableξ = V(y, f (x)) on Z has the meanE( f ) and 1

m ∑m
i=1 ξ(zi) = Ez( f ). Thus

we may expect by some standard empirical risk minimization (ERM) argument (e.g. Cucker and
Smale, 2001; Evgeniou, Pontil and Poggio, 2000; Shawe-Taylor et al., 1998; Vapnik, 1998; Wahba,
1990) to derive bounds forE( fz)−E( fq), where fq is a minimizer of theV-risk (7). It was shown
in Lin (2002) that forq > 1 such a minimizer is given by

fq(x) =
(1+ fρ(x))1/(q−1)− (1− fρ(x))1/(q−1)

(1+ fρ(x))1/(q−1) +(1− fρ(x))1/(q−1)
, x∈ X. (10)

Forq = 1 a minimizer isfc, see Wahba (1999). Note that sgn( fq) = fc.
Recall that for the classification algorithm (3), we are interested in the excess misclassification

error (5), not the excessV-risk E( fz)−E( fq). But we shall see in Section 3 thatR (sgn( f ))−
R ( fc) ≤

√
2(E( f )−E( fq)). One might apply this to the functionfz and get estimates for (5).

However, special features of the loss function (6) enable us to do better: by restricting fz onto
[−1,1], we can improve the sample error estimates. The idea of the following projectionoperator
was introduced for this purpose in Bartlett (1998).

Definition 1 Theprojection operatorπ is defined on the space of measurable functions f: X → R

as

π( f )(x) =





1, if f (x) ≥ 1,
−1, if f (x) ≤−1,
f (x), if −1 < f (x) < 1.

(11)

It is trivial that sgn(π( f )) = sgn( f ). Hence

R (sgn( fz))−R ( fc) ≤
√

2(E(π( fz))−E( fq)). (12)

The definition of the loss function (6) also tells us thatV(y,π( f )(x)) ≤V(y, f (x)), so

E(π( f )) ≤ E( f ) and Ez(π( f )) ≤ Ez( f ). (13)

According to (12), we need to estimateE(π( fz))−E( fq) in order to bound (5). To this end, we

introduce aregularizing function fK,C ∈ H K . It is arbitrarily chosen and depends onC.
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Proposition 2 Let fK,C ∈ H K , and fz be defined by (9). ThenE(π( fz))−E( fq) can be bounded by
{

E( fK,C)−E( fq)+
1

2C
‖ f ∗K,C‖2

K

}
+

{
E(π( fz))−Ez(π( fz))+Ez( fK,C)−E( fK,C)

}
. (14)

Proof Decompose the differenceE(π( fz))−E( fq) as

{
E(π( fz))−Ez(π( fz))

}
+

{(
Ez(π( fz))+

1
2C

‖ f ∗z ‖2
K

)
−
(

Ez( fK,C)+
1

2C
‖ f ∗K,C‖2

K

)}

+
{

Ez( fK,C)−E( fK,C)
}

+

{
E( fK,C)−E( fq)+

1
2C

‖ f ∗K,C‖2
K

}
− 1

2C
‖ f ∗z ‖2

K .

By the definition offz and (13), the second term is≤ 0. Then the statement follows.

The first term in (14) is called the regularization error (Smale and Zhou, 2004). It can be
expressed as a generalizedK-functional inf

f∈H K

{
E( f )−E( fq)+ 1

2C‖ f ∗‖2
K

}
when fK,C takes a special

choice f̃K,C (a standard choice in the literature, e.g. Steinwart 2001) defined as

f̃K,C := arg min
f∈H K

{
E( f )+

1
2C

‖ f ∗‖2
K

}
. (15)

Definition 3 Let V be a general loss function and fV
ρ be a minimizer of the V-risk (7). Theregular-

ization errorfor the regularizing function fK,C ∈ H K is defined as

D(C) := E( fK,C)−E( fV
ρ )+

1
2C

‖ f ∗K,C‖2
K . (16)

It is called theregularization error of the scheme(9) when fK,C = f̃K,C:

D̃(C) := inf
f∈H K

{
E( f )−E( fV

ρ )+
1

2C
‖ f ∗‖2

K

}
.

The main concern of this paper is the regularization error. We shall investigate its asymptotic
behavior. This investigation is not only important for bounding the first termin (14), but also
crucial for bounding the second term (sample error): it is well known in structural risk minimization
(Shawe-Taylor et al., 1998) that the size of the hypothesis space is essential. This is determined by
D(C) in our setting. OnceC is fixed, the sample error estimate becomes routine. Therefore, we
need to understand the choice of the parameterC from the bound forD(C).

Proposition 4 For any C≥ 1/2 and any fK,C ∈ H K , there holds

D(C) ≥ D̃(C) ≥ κ̃2

2C
(17)

where
κ̃ := E0/(1+κq4q−1), E0 := inf

b∈R

{E(b)−E( fq)}. (18)

Moreover,̃κ = 0 if and only if for some p0 ∈ [0,1], P(Y = 1|x) = p0 in probability.
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This proposition will be proved in Section 5.
According to Proposition 4, the decay ofD(C) cannot be faster thanO(1/C) except for some

very special distributions. This special case is caused by the offset in (9), for which D̃(C) ≡ 0.
Throughout this paper we shall ignore this trivial case and assumeκ̃ > 0.

Whenρ is strictly separable,D(C)= O(1/C). But this is a very special phenomenon. In general,
one should not expectE( f ) = E( fq) for some f ∈ H K . Even for (weakly) separable distributions
with zero margin,D(C) decays asO(C−p) for some 0< p < 1. To realize such a decay for these
separable distributions, the regularizing function will be multiples of a separating function. For
details and the concepts of strictly or weakly separable distributions, see Section 2.

For general distributions, we shall choosefK,C = f̃K,C in Sections 6 and 7 and estimate the
regularization error of the scheme (9) associated with the loss function (6)by means of the approxi-
mation in the function spaceLq

ρX . In particular,D̃(C)≤ K ( fq, 1
2C), whereK ( fq, t) is aK-functional

defined as

K ( fq, t) :=





inf
f∈H K

{
‖ f − fq‖q

Lq
ρX

+ t‖ f ∗‖2
K

}
, if 1 < q≤ 2,

inf
f∈H K

{
q2q−1(2q−1 +1)‖ f − fq‖Lq

ρX
+ t‖ f ∗‖2

K

}
, if q > 2.

(19)

In the caseq = 1, the regularization error (Wu and Zhou, 2004) depends on the approximation
in L1

ρX
of the function fc which is not continuous in general. Forq > 1, the regularization error

depends on the approximation inLq
ρX of the function fq. When the regression function has good

smoothness,fq has much higher regularity thanfc. Hence the convergence forq > 1 may be faster
than that forq = 1, which improves the regularization error.

The second term in (14) is called thesample error. WhenC is fixed, the sample errorE( fz)−
Ez( fz) is well understood (except for the offset term). In (14), the sample error is for the function
π( fz) instead offz while the misclassification error (5) is kept:R (sgn(π( fz))) = R (sgn( fz)). Since
the bound forV(y,π( f )(x)) is much smaller than that forV(y, f (x)), the projection improves the
sample error estimate.

Based on estimates for the regularization error and sample error above, our error analysis will
provideε(δ,m,C,β) > 0 for any 0< δ < 1 such that with confidence 1−δ,

E(π( fz))−E( fq) ≤ (1+β){D(C)+ ε(δ,m,C,β)}. (20)

Here 0< β ≤ 1 is an arbitrarily fixed number. Moreover, lim
m→∞

ε(δ,m,C,β) = 0.

If fq lies in theLq
ρX -closure ofH K , then lim

t→0
K ( fq, t) = 0 by (19). HenceE(π( fz))−E( fq)→ 0

with confidence asm (and henceC = C(m)) becomes large. This is the case whenK is a universal
kernel, i.e.,HK is dense inC(X), or when a sequence of kernels whose RKHS tends to be dense
(e.g. polynomial kernels with increasing degrees) is used.

In summary, estimating the excess misclassification errorR (sgn( fz))−R ( fc) consists of three
parts: the comparison (12), the regularization errorD(C) and the sample errorε(δ,m,C,β) in (20).
As functions of the variableC, D(C) decreases whileε(δ,m,C,β) usually increases. Choosing
suitable values for the regularization parameterC will give the optimal convergence rate. To this
end, we need to consider the tradeoff between these two errors. This can be done by minimizing the
right side of (20), as shown in the following form.
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Lemma 5 Let p,α,τ > 0. Denote cp,α,τ := (p/τ)
τ

τ+p +(τ/p)
p

τ+p . Then for any C> 0,

C−p +
Cτ

mα ≥ cp,α,τ

(
1
m

) αp
τ+p

. (21)

The equality holds if and only if C= (p/τ)
1

τ+p m
α

τ+p . This yields the optimal powerαp
τ+p.

The goal of the regularization error estimates is to havep in D(C) = O(C−p), as large as possi-
ble. But p≤ 1 according to Proposition 4. Good methods for sample error estimates provide large
α and smallτ such thatε(δ,m,C,β) = O( Cτ

mα ). Notice that, as always, both the approximation prop-
erties (represented by the exponentp) and the estimation properties (represented by the exponents
τ andα) are important to get good estimates for the learning rates (with the optimal rateαp

τ+p).

2. Demonstrating with Weakly Separable Distributions

With some special cases let us demonstrate how our error analysis yields some guidelines for choos-
ing the regularization parameterC. For weakly separable distributions, we also compare our re-
sults with bounds in the literature. To this end, we need the covering number ofthe unit ball
B := { f ∈ HK : ‖ f‖K ≤ 1} of HK (considered as a subset ofC(X)).

Definition 6 For a subsetF of a metric space andη > 0, thecovering numberN (F ,η) is defined
to be the minimal integer̀∈ N such that there exist̀disks with radiusη coveringF .

Denote the covering number ofB in C(X) by N (B,η). Recall the constant̃κ defined in (18).
Since the algorithm involves an offset term, we also need its covering numberand set

N (η) :=
{
(κ+

1
κ̃
)
1
η

+1
}

N (B,η). (22)

Definition 7 We say that the Mercer kernel K haslogarithmic complexity exponents≥ 1 if for
some c> 0, there holds

logN (η) ≤ c(log(1/η))s, ∀η > 0. (23)

The kernel K haspolynomial complexity exponents> 0 if

logN (η) ≤ c(1/η)s, ∀η > 0. (24)

The covering numberN (B,η) has been extensively studied (see e.g. Bartlett, 1998; Williamson,
Smola and Scḧolkopf, 2001; Zhou, 2002; Zhou, 2003a). In particular, for convolution type kernels
K(x,y) = k(x−y) with k̂≥ 0 decaying exponentially fast, (23) holds (Zhou, 2002, Theorem 3). As
an example, consider the Gaussian kernelK(x,y) = exp{−|x− y|2/σ2} with σ > 0. If X ⊂ [0,1]n

and 0< η ≤ exp{90n2/σ2 − 11n− 3}, then (23) is valid (Zhou, 2002) withs = n+ 1. A lower
bound (Zhou, 2003a) holds withs= n

2, which shows the upper bound is almost sharp. It was also
shown in (Zhou, 2003a) thatK has polynomial complexity exponent 2n/p if K is Cp.

To demonstrate our main results concerning the regularization parameterC, we shall only choose
kernels having logarithmic complexity exponents or having polynomial complexity exponents with
s small. This means,H K has small complexity.
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The special case we consider here is the deterministic case:R ( fc) = 0. Understanding how to
find D(C) andε(δ,m,C,β) in (20) and then how to choose the parameterC is our target. ForM ≥ 0,
denote

θM =

{
0, if M = 0,
1, if M > 0.

(25)

Proposition 8 SupposeR ( fc) = 0. If fK,C ∈ H K satisfies‖V(y, fK,C(x))‖∞ ≤ M, then for every
0 < δ < 1, with confidence at least1−δ, we have

R (sgn( fz)) ≤ 2max

{
ε∗,

4M log(2/δ)

m

}
+4D(C), (26)

where withM :=
√

2CD(C)+2CεθM, ε∗ > 0 is the unique solution to the equation

logN

(
ε

q2q+3M

)
− 3mε

2q+9 = log(δ/2). (27)

(a) If (23) is valid, then with̃c = 2q+9{1+c((q+4) log8)s},

ε∗ ≤ c̃

(
(logm+ log(CD(C))+ log(CθM))s+ log(2/δ)

m

)
.

(b) If (24) is valid and C≥ 1, then with a constant̃c (given explicitly in the proof),

ε∗ ≤ c̃log(2/δ)

{
(2CD(C))s/(2s+2)

m1/(s+1)
+

(2C)s/(s+2)

m1/( s
2+1)

}
. (28)

Note that the above constantc̃ depends onc,q, and κ, but not onC, m or δ. The proof of
Proposition 8 will be given in Section 5.

We can now derive our error bound for weakly separable distributions.

Definition 9 We say thatρ is (weakly) separableby H K if there is a function fsp∈ H K , called a
separating function, satisfying‖ f ∗sp‖K = 1 and y fsp(x) > 0 almost everywhere. It hasseparation
exponentθ ∈ (0,+∞] if there are positive constantsγ,c′ such that

ρX{x∈ X : | fsp(x)| < γt} ≤ c′tθ, ∀ t > 0. (29)

Observe that condition (29) withθ = +∞ is equivalent to

ρX{x∈ X : | fsp(x)| < γt} = 0, ∀ 0 < t < 1.

That is,| fsp(x)| ≥ γ almost everywhere. Thus, weakly separable distributions with separationexpo-
nentθ = +∞ are exactly strictly separable distributions. Recall (e.g. Vapnik, 1998; Shawe-Taylor et
al., 1998) thatρ is said to bestrictly separableby H K with marginγ > 0 if ρ is (weakly) separable
together with the requirementy fsp(x) ≥ γ almost everywhere.

¿From the first part of Definition 9, we know that for a separable distribution ρ, the set{x :
fsp(x) = 0} hasρX-measure zero, hence

lim
t→0

ρX{x∈ X : | fsp(x)| < t} = 0.

The separation exponentθ measures the asymptotic behavior ofρ near the boundary of two classes.
It gives the convergence with a polynomial decay.
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Theorem 10 If ρ is separable and has separation exponentθ ∈ (0,+∞] with (29) valid, then for
every0 < δ < 1, with confidence at least1−δ, we have

R (sgn( fz)) ≤ 2ε∗ +
8log(2/δ)

m
+4(2c′)

2
θ+2 (Cγ2)−

θ
θ+2 , (30)

whereε∗ is solved by

logN

(
ε

q2q+3

√
2(2c′)

2
θ+2 γ−

2θ
θ+2C

2
θ+2 +2Cε

)
− 3mε

2q+9 = log(δ/2). (31)

(a) If (23) is satisfied, with a constant̃c depending onγ we have

R (sgn( fz)) ≤ c̃

(
log(2/δ)+(logm+ logC)s

m
+C− θ

θ+2

)
. (32)

(b) If (24) is satisfied, there holds

R (sgn( fz)) ≤ c̃

{
log

2
δ

(
C

s
(s+1)(θ+2) m− 1

s+1 +C
s

s+2 m− 1
s/2+1

)
+C− θ

θ+2

}
. (33)

Proof Chooset = ( γθ

2c′C)1/(θ+2) > 0 and the functionfK,C = 1
t fsp∈H K . Then we have1

2C‖ f ∗K,C‖2
K =

1
2Ct2 .

Sincey fsp(x) > 0 almost everywhere, we know that for almost everyx ∈ X, y = sgn( fsp)(x).
This meansfρ = sgn( fsp) and thenfq = sgn( fsp). It follows thatR ( fc) = 0 andV(y, fK,C(x)) =

(1− | fsp(x)|
t )q

+ ∈ [0,1] almost everywhere. Therefore, we may takeM = 1 in Proposition 8. More-
over,

E( fK,C) =
Z

Z

(
1−

y fsp(x)

t

)q

+
dρ =

Z

X

(
1−

| fsp(x)|
t

)q

+
dρX.

This can be bounded by (29) as
Z

{x:| fsp(x)|<t}

(
1−

| fsp(x)|
t

)q

+
dρX ≤ ρX{x∈ X : | fsp(x)| < t} ≤ c′

( t
γ

)θ
.

It follows from the choice oft that

D(C) ≤ c′
( t

γ

)θ
+

1
2Ct2

= (2c′)
2

θ+2 (Cγ2)−
θ

θ+2 . (34)

Then our conclusion follows from Proposition 8.

In case (a), the bound (32) tells us to chooseC such that(logC)s/m → 0 andC → ∞ as
m→ ∞. By (32) a reasonable choice of the regularization parameterC is C = m

θ+2
θ , which yields

R (sgn( fz)) = O( (logm)s

m ). In case (b),

when(24) is valid, C = m
θ+2

θ+s+θs =⇒ R (sgn( fz)) = O(m− θ
θ+s+θs). (35)

The following is a typical example of separable distribution which is not strictly separable. In
this example, the separation exponent isθ = 1.
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Example 1 Let X = [−1/2,1/2] andρ be the Borel probability measure on Z such thatρX is the
Lebesgue measure on X and

fρ(x) =

{
1, for −1/2≤ x≤−1/4 and1/4≤ x≤ 1/2,
−1, for −1/4≤ x < 1/4.

(a) If K is the linear polynomial kernel K(x,y) = x ·y, thenR (sgn( fz))−R ( fc) ≥ 1/4.

(b) If K is the quadratic polynomial kernel K(x,y) = (x ·y)2, then with confidence1−δ,

R (sgn( fz)) ≤
q(q+4)2q+11(logm+ logC+2log(2/δ))

m
+

16

C1/3
.

Hence one should take C such thatlogC/m→ 0 and C→ ∞ as m→ ∞.

Proof The first statement is trivial.
To see (b), we note that dimHK = 1 andκ = 1/4. Also, E0 = inf

b∈R

E(b) = 1. Henceκ̃ =

1/(1+q4q−2). SinceHK = {ax2 : a∈ R} and‖ax2‖K = |a|, N (B,η) ≤ 1/(2η). Then (23) holds

with s= 1 andc = 4q. By Proposition 8, we see thatε∗ ≤ q(q+4)2q+11(log(Cm)+log(2/δ))
m .

Take the functionfsp(x) = x2−1/16∈ H K with ‖ f ∗sp‖K = 1. We see thaty fsp(x) > 0 almost
everywhere. Moreover,

{x∈ X : | fsp(x)| < t} ⊆
[√

1−16t
4

,

√
1+16t

4

]
[

[
−
√

1+16t
4

,−
√

1−16t
4

]
.

The measure of this set is bounded by 8
√

2t. Hence (29) holds withθ = 1, γ = 1 andc′ = 8
√

2.
Then Theorem 10 gives the stated bound forR (sgn( fz)).

In this paper, for the sample error estimates we only use the (uniform) covering numbers in
C(X). Within the last a few years, the empirical covering numbers (in`∞ or `2), the leave-one-out
error or stability analysis (e.g. Vapnik, 1998; Bousquet and Ellisseeff,2002; Zhang, 2004), and
some other advanced empirical process techniques such as the local Rademacher averages (van der
Vaart and Wellner, 1996; Bartlett, Bousquet and Mendelson, 2004; and references therein) and the
entropy integrals (van der Vaart and Wellner, 1996) have been developed to get better sample error
estimates. These techniques can be applied to various learning algorithms. They are powerful to
handle general hypothesis spaces even with large capacity.

In Zhang (2004) the leave-one-out technique was applied to improve the sample error estimates
given in Bousquet and Ellisseeff (2002): the sample error has a kernel-independent boundO(C

m),

improving the boundO( C√
m) in Bousquet and Ellisseeff (2002); while the regularization errorD̃(C)

depends onK andρ. In particular, forq = 2 the bound (Zhang, 2004, Corollary 4.2) takes the form:

E(E( fz)) ≤
(

1+
4κ2C

m

)2
inf

f∈HK

{
E( f )+

1
2C

‖ f‖2
K

}
=
(

1+
4κ2C

m

)2{
D̃(C)+E( fq)

}
. (36)

In Bartlett, Jordan and McAuliffe (2003) the empirical process techniques are used to improve
the sample error estimates for ERM. In particular, Theorem 12 there states that for a convex setF
of functions onX, the minimizerf̂ of the empirical error overF satisfies

E( f̂ ) ≤ inf
f∈F

E( f )+K max

{
ε∗,
(crL2 log(1/δ)

m

)1/(2−β)
,
BLlog(1/δ)

m

}
. (37)
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HereK,cr ,β are constants, andε∗ is solved by an inequality. The constantB is a bound for differ-
ences, andL is the Lipschitz constant for the lossφ with respect to a pseudometric onR. For more
details, see Bartlett, Jordan and McAuliffe (2003). The definitions ofB andL together tell us that

|φ(y1 f (x1))−φ(y2 f (x2))| ≤ LB, ∀ (x1,y1) ∈ Z,(x2,y2) ∈ Z, f ∈ F . (38)

Because of our improvement for the bound of the random variablesV(y, f (x)) given by the pro-
jection operator, for the algorithm (3) the error bounds we derive hereare better than existing results
when the kernel has small complexity. Let us confirm this for separable distributions with separa-
tion exponent 0< θ < ∞ and for kernels with polynomial complexity exponents> 0 satisfying (24).
Recall thatD(C) = O(C− θ

θ+2 ). Takeq = 2.
Consider the estimate (36). This together with (34) tells us that the derived bound forE(E( fz)−

E( fq)) is at least of the order̃D(C)+ C
mD̃(C) = O(C− θ

θ+2 + C
2

θ+2

m ). By Lemma 5, the optimal bound

derived from (36) isO(m− θ
θ+2 ). Thus, our bound (35) is better than (36) when 0< s< 2

θ+1.

Turn to the estimate (37). TakeF to be the ball of radius
√

2CD̃(C) of HK (the expected

smallest ball wheref ∗z lies), we find that the constantLB in (38) should be at leastκ
√

2CD̃(C).

This tells us that one term in the bound (37) for the sample error is at leastO
(√

2CD̃(C)
m

)
= O(C

1
θ+2

m ),

while the other two terms are more involved. Applying Lemma 5 again, we find that the bound
derived from (37) is at leastO(m− θ

θ+1 ). So our bound (35) is better than (37) at least for 0< s< 1
θ+1.

Thus, our analysis with the help of the projection operator improves existing error bounds when
the kernel has small complexity. Note that in (35), the values ofs for which the projection operator
gives an improvement are values corresponding to rapidly diminishing regularization (C = mβ with
β > 1 being large).

For kernels with large complexity, refined empirical process techniques (e.g. van der Vaart and
Wellner, 1996; Mendelson, 2002; Zhang, 2004; Bartlett, Jordan and McAuliffe, 2003) should give
better bounds: the capacity of the hypothesis space may have more influence on the sample error
than the bound of the random variableV(y, f (x)), and the entropy integral is powerful to reduce this
influence. To find the range of this large complexity, one needs explicit rateanalysis for both the
sample error and regularization error. This is out of our scope. It would be interesting to get better
error bounds by combining the ideas of empirical process techniques andthe projection operator.

Problem 11 How much improvement can we get for the total error when we apply the projection
operator to empirical process techniques?

Problem 12 Given θ > 0,s > 0,q ≥ 1, and 0 < δ < 1, what is the largest numberα > 0 such
that R (sgn( fz)) = O(m−α) with confidence1− δ whenever the distributionρ is separable with
separation exponentθ and the kernel K satisfies (24)? What is the corresponding optimal choiceof
the regularization parameter C?

In particular, for Example 1 we have the following.

Conjecture 13 In Example 1, with confidence1−δ there holdsR (sgn( fz)) = O( log(2/δ)
m ) by choos-

ing C= m3.
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Consider the well known setting (Vapnik, 1998; Shawe-Taylor et al., 1998; Steinwart, 2001;
Cristianini and Shawe-Taylor, 2000) of strictly separable distributions withmarginγ > 0. In this
case, Shawe-Taylor et al. (1998) shows that

R (sgn( f )) ≤ 2
m

(logN (F ,2m,γ/2)+ log(2/δ)) (39)

with confidence 1− δ for m > 2/γ wheneverf ∈ F satisfiesyi f (xi) ≥ γ. HereF is a function
set,N (F ,2m,γ/2) = sup

~t∈X2m

N (F ,~t,γ/2) andN (F ,~t,γ/2) denotes the covering number of the set

{( f (ti))2m
i=1 : f ∈ F } in R

2m with the`∞ metric. For a comparison of this covering number with that
in C(X), see Pontil (2003).

In our analysis, we can takefK,C = 1
γ fsp∈ H K . ThenM = ‖V(y, fK,C(x))‖∞ = 0, andD(C) =

1
2Cγ2 . We see from Proposition 8 (a) that when (23) is satisfied, there holdsR ( fz)≤ c̃( (log(1/γ)+logm)s+log(1/δ)

m ).

But the optimal boundO( 1
m) is also valid for spaces with larger complexity, which can be seen from

(39) by the relation of the covering numbers:N (F ,2m,γ/2) ≤ N (F ,γ/2). See also Steinwart
(2001). We see the shortcoming of our approach for kernels with large complexity. This convinces
the interest of Problem 11 raised above.

3. Comparison of Errors

In this section we consider how to bound the misclassification error by theV-risk. A systematic
study of this problem was done for convex loss functions by Zhang (2004), and for more general
loss functions by Bartlett, Jordan, and McAuliffe (2003). Using these results, it can be shown that
for the loss functionVq, there holds

ψ
(

R (sgn( f ))−R ( fc)
)
≤ E( f )−E( fq),

whereψ : [0,1] → R+ is a function defined in Bartlett, Jordan, and McAuliffe (2003) and can be
explicitly computed.

In fact, we have

R (sgn( f ))−R ( fc) ≤ c
√

E( f )−E( fq). (40)

Such a comparison of errors holds true even for a general convex loss function, see Theorem 34 in
Appendix. The derived bound for the constantc in (40) need not be optimal. In the following we
shall give an optimal estimate in a simpler form.

The constant we derive depends onq and is given by

Cq =

{
1, if 1 ≤ q≤ 2,
2(q−1)/q, if q > 2.

(41)

We can see thatCq ≤ 2.

Theorem 14 Let f : X → R be measurable. Then

R (sgn( f ))−R ( fc) ≤
√

Cq(E( f )−E( fq)) ≤
√

2(E( f )−E( fq)).
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Proof By the definition, only points with sgn( f )(x) 6= fc(x) are involved for the misclassification
error. Hence

R (sgn( f ))−R ( fc) =
Z

X
| fρ(x)|χ{sgn( f )(x)6=sgn( fq)(x)}dρX. (42)

This in connection with the Schwartz inequality implies that

R (sgn( f ))−R ( fc) ≤
{

Z

X
| fρ(x)|2χ{sgn( f )(x)6=sgn( fq)(x)}dρX

}1/2

.

Thus it is sufficient to show for thosex∈ X with sgn( f )(x) 6= sgn( fq)(x),

| fρ(x)|2 ≤Cq (E( f |x)−E( fq|x)) , (43)

where forx∈ X, we have denoted

E( f |x) :=
Z

Y
Vq(y, f (x))dρ(y|x). (44)

By the definition of the loss functionVq, we have

E( f |x) = (1− f (x))q
+

1+ fρ(x)

2
+(1+ f (x))q

+

1− fρ(x)

2
. (45)

It follows that

E( f |x)−E( fq|x) =
Z f (x)− fq(x)

0
F(u)du, (46)

whereF(u) is the function (depending on the parameterfρ(x)):

F(u) =
1− fρ(x)

2
q(1+ fq(x)+u)

q−1
+ − 1+ fρ(x)

2
q(1− fq(x)−u)

q−1
+ , u∈ R.

SinceF(u) is nondecreasing andF(0) = 0, we see from (46) that when sgn( f )(x) 6= sgn( fq)(x),
there holds

E( f |x)−E( fq|x) ≥
Z − fq(x)

0
F(u)du= E(0|x)−E( fq|x) = 1−E( fq|x). (47)

But

E( fq|x) =
2q−1

(
1−| fρ(x)|2

)
{
(1+ fρ(x))1/(q−1) +(1− fρ(x))1/(q−1)

}q−1 . (48)

Therefore, (43) is valid (witht = fρ(x)) once the following inequality is verified:

t2

Cq
≤ 1− 2q−1

(
1− t2

)
{
(1+ t)1/(q−1) +(1− t)1/(q−1)

}q−1 , t ∈ [−1,1].

This is the same as the inequality

(
1− t2

Cq

)−1/(q−1)

≤ (1+ t)−1/(q−1) +(1− t)−1/(q−1)

2
, t ∈ [−1,1]. (49)
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To prove (49), we use the Taylor expansion

(1+u)α =
∞

∑
k=0

(
α
k

)
uk =

∞

∑
k=0

∏k−1
`=0(α− `)

k!
uk, u∈ (−1,1).

With α = −1/(q−1), we have

(
1− t2

Cq

)−1/(q−1)

=
∞

∑
k=0

∏k−1
`=0

(
1

q−1 + `
)

k!
1

Ck
q

t2k

and (all the odd power terms vanish)

(1+ t)−1/(q−1) +(1− t)−1/(q−1)

2
=

∞

∑
k=0

∏k−1
`=0

(
1

q−1 + `
)

k!

(
k−1

∏̀
=0

1
q−1 + `+k

1+ `+k

)
t2k.

Note that
k−1

∏̀
=0

1
q−1 + `+k

1+ `+k
≥ 1

Ck
q
.

This proves (49) and hence our conclusion.

WhenR ( fc) = 0, the estimate in Theorem 14 can be improved (Zhang 2004, Bartlett, Jordan
and McAuliffe 2003) to

R (sgn( f )) ≤ E( f ). (50)

In fact,R ( fc) = 0 implies| fρ(x)|= 1 almost everywhere. This in connection with (48) and (47)
givesE( fq|x) = 0 andE( f |x) ≥ 1 when sgn( f )(x) 6= fc(x). Then (43) can be improved to the form
| fρ(x)| ≤ E( f |x). Hence (50) follows from (42).

Theorem 14 tells us that the misclassification error can be bounded by theV-risk associated with
the loss functionV. So our next step is to study the convergence of theq-classifier with respect to
theV-risk E .

4. Bounding the Offset

If the offsetb is fixed in the scheme (3), the sample error can be bounded by standard argument using
some measurements of the capacity of the RKHS. However, the offset is part of the optimization
problem and even its boundedness can not be seen from the definition. This makes our setting here
essentially different from the standard Tikhonov regularization scheme.The difficulty of bounding
the offsetb has been realized in the literature (e.g. Steinwart, 2002; Bousquet and Ellisseeff, 2002).
In this paper we shall overcome this difficulty by means of special featuresof the loss functionV.

The difficulty raised by the offset can also be seen from the stability analysis (Bousquet and
Ellisseeff, 2002). As shown in Bousquet and Ellisseeff (2002), the SVM 1-norm classifier without
the offset is uniformly stable, meaning that sup

z∈Zm,z′0∈Z
‖V(y, fz(x))−V(y, fz′(x))‖L∞ ≤ βm with βm→ 0

asm→ ∞, andz′ is the same asz except that one element ofz is replaced byz′0.
The SVM 1-norm classifier with the offset is not uniformly stable. To see this, we choosex0 ∈X

and samplesz= {(x0,yi)}2n+1
i=1 with yi = 1 for i = 1, . . . ,n+1, andyi =−1 for i = n+2, . . . ,2n+1.
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Take z′0 = (x0,−1). As xi are identical, one can see from the definition (9) thatf ∗z = 0 (since
Ez( fz) = Ez(bz + fz(x0))). It follows that fz = 1 while fz′ = −1. Thus,| fz− fz′ | = 2 which does
not converge to zero asm= 2n+1 tends to infinity. It is unknown whether theq-norm classifier is
uniformly stable forq > 1.

How to bound the offset is the main goal of this section. In Wu and Zhou (2004) a direct
computation is used to realize this point forq= 1. Here the indexq> 1 makes a direct computation
very difficult, and we shall use two bounds to overcome this difficulty. Byx∈ (X,ρX) we mean that
x lies in the support of the measureρX onX.

Lemma 15 For any C> 0,m∈ N andz∈ Zm, a minimizer of (9) satisfies

min
1≤i≤m

fz(xi) ≤ 1 and max
1≤i≤m

fz(xi) ≥−1 (51)

and a minimizer of (15) satisfies

inf
x∈(X,ρX)

f̃K,C(x) ≤ 1 and sup
x∈(X,ρX)

f̃K,C(x) ≥−1. (52)

Proof Suppose a minimizer of (9)fz satisfiesr := min
1≤i≤m

fz(xi) > 1. Then fz(xi)− (r −1) ≥ 1 for

eachi. We claim that
yi = 1, ∀i = 1, . . . ,m.

In fact, if the setI := {i ∈ {1, . . . ,m} : yi = −1} is not empty, we have

Ez( fz− (r −1)) =
1
m∑

i∈I

(1+ fz(xi)− (r −1))q <
1
m∑

i∈I

(1+ fz(xi))
q = Ez( fz),

which is a contradiction to the definition offz. Hence our claim is verified. From the claim we
see thatEz( fz− (r −1)) = 0 = Ez( fz). This tells us that̃fz := fz− (r −1) is a minimizer of (9)
satisfying the first inequality, hence both inequalities of (51).

In the same way, if a minimizer of (9)fz satisfiesr := max
1≤i≤m

fz(xi) < −1. Then we can see

thatyi = −1 for eachi. HenceEz( fz− r −1) = Ez( fz) and f̃z := fz− r −1 is a minimizer of (9)
satisfying the second inequality and hence both inequalities of (51).

Therefore, we can always find a minimizer of (9) satisfying (51).
We prove the second statement in the same way. Supposer := inf

x∈(X,ρX)
f̃K,C(x) > 1 for a mini-

mizer f̃K,C of (15). Thenf̃K,C(x)− (r −1) ≥ 1 for almost everyx∈ (X,ρX). Hence

E
(

f̃K,C− (r −1)
)

=
Z

X

(
1+ f̃K,C(x)− (r −1)

)q
P(Y = −1|x)dρX ≤ E( f̃K,C).

As fK,C is a minimizer of (15), the above equality must hold. It follows thatP(Y = −1|x) = 0 for
almost everyx ∈ (X,ρX). HenceF̃K,C := f̃K,C − (r −1) is a minimizer of (15) satisfying the first
inequality and thereby both inequalities of (52).

Similarly, whenr := sup
x∈(X,ρX)

f̃K,C(x) < −1 for a minimizer f̃K,C of (15). ThenP(Y = 1|x) = 0

for almost everyx∈ (X,ρX). HenceF̃K,C := fK,C− r−1 is a minimizer of (15) satisfying the second
inequality and thereby both inequalities of (52).
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Thus, (52) can always be realized by a minimizer of (15).

In what follows we always choosefz and f̃K,C to satisfy (51) and (52), respectively.
Lemma 15 yields bounds for theHK-norm and offset forfz and f̃K,C. Denoteb f̃K,C

asb̃K,C.

Lemma 16 For any C> 0,m∈ N, fK,C ∈ H K , andz∈ Zm, there hold

(a) ‖ f̃ ∗K,C‖K ≤
√

2CD̃(C) ≤
√

2C, |b̃K,C| ≤ 1+‖ f̃ ∗K,C‖∞.

(b) ‖ f̃K,C‖∞ ≤ 1+2κ
√

2CD̃(C) ≤ 1+2κ
√

2C, E( f̃K,C) ≤ E( fq)+ D̃(C) ≤ 1.

(c) |bz| ≤ 1+κ‖ f ∗z ‖K .

Proof By the definition (15), we see from the choicef = 0+0 that

D̃(C) = E( f̃K,C)−E( fq)+
1

2C
‖ f̃ ∗K,C‖2

K ≤ 1−E( fq). (53)

Then the first inequality in (a) follows.
Note that (52) gives

−1≤ sup
x∈(X,ρX)

f̃K,C ≤ b̃K,C +‖ f̃ ∗K,C‖∞

and
b̃K,C−‖ f̃ ∗K,C‖∞ ≤ inf

x∈(X,ρX)
f̃K,C ≤ 1.

Thus,|b̃K,C| ≤ 1+‖ f̃ ∗K,C‖∞. This proves the second inequality in (a).

Since the first inequality in (a) and (2) lead to‖ f̃ ∗K,C‖∞ ≤ κ
√

2CD̃(C), we obtain‖ f̃K,C‖∞ ≤

1+2‖ f̃ ∗K,C‖∞ ≤ 1+2κ
√

2CD̃(C). Hence the first inequality in (b) holds.
The second inequality in (b) is an easy consequence of (53).
The inequality in (c) follows from (51) in the same way as the proof of the second inequality in

(a).

5. Convergence of theq-Norm Soft Margin Classifier

In this section, we apply the ERM technique to analyze the convergence of theq-classifier forq> 1.
The situation here is more complicated than that forq= 1. We need the following lemma concerning
q > 1.

Lemma 17 For q > 1, there holds
∣∣(x)q

+− (y)q
+

∣∣≤ q(max{x,y})q−1
+ |x−y|, ∀x,y∈ R.

If y ∈ [−1,1], then
∣∣(1−x)q

+− (1−y)q
+

∣∣≤ q4q−1|x−y|+q2q−1|x−y|q, ∀x∈ R.
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Proof We only need to prove the first inequality forx > y. This is trivial:

(x)q
+− (y)q

+ =
Z x

y
q(u)

q−1
+ du≤ q(x)q−1

+ (x−y).

If y∈ [−1,1], then 1−y≥ 0 and the first inequality yields
∣∣(1−x)q

+− (1−y)q
+

∣∣≤ q(max{1−x,1−y})q−1
+ |x−y|. (54)

Whenx≥ 2y−1, we have
∣∣(1−x)q

+− (1−y)q
+

∣∣≤ q2q−1(1−y)q−1|x−y| ≤ q4q−1|x−y|.

Whenx< 2y−1, we have 1−x< 2(y−x) andx< 1. This in combination with max{1−x,1−y} ≤
max{1−x,2} and (54) implies

∣∣(1−x)q
+− (1−y)q

+

∣∣≤ q{(1−x)q−1 +2q−1}|x−y| ≤ q2q−1|x−y|q +q2q−1|x−y|.

This proves Lemma 17.

The second part of Lemma 17 will be used in Section 6. The first part can be used to verify
Proposition 4.

Proof of Proposition 4. It is trivial that D(C) ≥ D̃(C). To show the second inequality, apply the
first inequality of Lemma 17 to the two numbers 1−yf̃K,C(x) and 1− ỹbK,C. We see that

(1−yf̃K,C(x))q
+ ≥ (1− ỹbK,C)q

+−q(1+ | f̃K,C(x)|+ |b̃K,C|)q−1| f̃ ∗K,C(x)|.

Notice that| f̃ ∗K,C(x)| ≤ κ‖ f̃ ∗K,C‖K and by Lemma 16,|b̃K,C| ≤ 1+κ‖ f̃ ∗K,C‖K . Hence

E( f̃K,C) ≥ E(b̃K,C)−κq2q−1(1+κ‖ f̃ ∗K,C‖K)q−1‖ f̃ ∗K,C‖K .

It follows that when‖ f̃ ∗K,C‖K ≤ κ̃, we have

E( f̃K,C)−E( fq) ≥ E0−κq2q−1(1+κκ̃)q−1κ̃.

SinceE0 ≤ 1, the definition (18) of̃κ yields κ̃ ≤ 1/(1+κ) ≤ min{1,1/κ}. Hence

D̃(C) ≥ E( f̃K,C)−E( fq) ≥ E0−κq4q−1κ̃ = κ̃ ≥ κ̃2.

As C≥ 1/2, we conclude (17) in this case.
When‖ f̃ ∗K,C‖K > κ̃, we also have

D̃(C) ≥ 1
2C

‖ f̃ ∗K,C‖2
K ≥ κ̃2

2C
.

Thus in both case we have verified (17).
Note that̃κ = 0 if and only ifE0 = 0. This means for someb′0 ∈ [−1,1], fq(x) = b′0 in probability.

By the definition offq, the last assertion of Proposition 4 follows.
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The loss functionV is not Lipschitz, but Lemma 17 enables us to derive a bound forE(π( fz))−
Ez(π( fz)) with confidence, as done for Lipschitz loss functions in Mukherjee, Rifkinand Poggio
(2002). Since the functionπ( fz) changes and lies in a set of functions, we shall compare the error
with the empirical error for functions from a set

F := {π( f ) : f ∈ BR+[−B,B]} . (55)

HereBR = { f ∗ ∈ HK : ‖ f ∗‖K ≤ R} and the constantB is a bound for the offset.
The following probability inequality was motivated by sample error estimates for the square

loss (Barron 1990, Bartlett 1998, Cucker and Smale 2001, Lee, Bartlettand Williamson 1998) and
will be used in our estimates.

Lemma 18 Suppose a random variableξ satisfies0 ≤ ξ ≤ M, and z = (zi)
m
i=1 are independent

samples. Let µ= E(ξ). Then for everyε > 0 and0 < α ≤ 1, there holds

Probz∈Zm

{
µ− 1

m ∑m
i=1 ξ(zi)√

µ+ ε
≥ α

√
ε

}
≤ exp

{
−3α2mε

8M

}
.

Proof As ξ satisfies|ξ−µ| ≤ M, the one-side Bernstein inequality tells us that

Probz∈Zm

{
µ− 1

m ∑m
i=1 ξ(zi)√

µ+ ε
≥ α

√
ε

}
≤ exp

{
− α2m(µ+ ε)ε

2
(
σ2 + 1

3Mα
√

µ+ ε
√

ε
)
}

.

Hereσ2 ≤ E(ξ2) ≤ ME(ξ) = Mµ since 0≤ ξ ≤ M. Then we find that

σ2 +
1
3

Mα
√

µ+ ε
√

ε ≤ Mµ+
1
3

M(µ+ ε) ≤ 4
3

M(µ+ ε).

This yields the desired inequality.

Now we can turn to the error bound involving a function set. Lemma 17 yields thefollowing
bounds concerning the loss functionV:

|Ez( f )−Ez(g)| ≤ qmax
{
(1+‖ f‖∞)q−1 ,(1+‖g‖∞)q−1

}
‖ f −g‖∞ (56)

and

|E( f )−E(g)| ≤ qmax
{

(1+‖ f‖∞)q−1 ,(1+‖g‖∞)q−1
}
‖ f −g‖∞. (57)

Lemma 19 Let F be a subset of C(X) such that‖ f‖∞ ≤ 1 for each f∈ F . Then for everyε > 0
and0 < α ≤ 1, we have

Probz∈Zm

{
sup
f∈F

E( f )−Ez( f )√
E( f )+ ε

≥ 4α
√

ε

}
≤ N

(
F ,

αε
q2q−1

)
exp

{
−3α2mε

2q+3

}
.
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Proof Let { f j}J
j=1 ⊂ F with J = N

(
F , αε

q2q−1

)
such thatF is covered by balls centered atf j with

radius αε
q2q−1 . Note thatξ = V(y, f (x)) satisfies 0≤ ξ ≤ (1+‖ f‖∞)q ≤ 2q for f ∈ F . Then for each

j, Lemma 18 tells

Probz∈Zm

{
E( f j)−Ez( f j)√

E( f j)+ ε
≥ α

√
ε

}
≤ exp

{
−3α2mε

8·2q

}
.

For eachf ∈ F , there is somej such that‖ f − f j‖∞ ≤ αε
q2q−1 . This in connection with (56) and

(57) tells us that|Ez( f )−Ez( f j)| and|E( f )−E( f j)| are both bounded byαε. Hence

|Ez( f )−Ez( f j)|√
E( f )+ ε

≤ α
√

ε and
|E( f )−E( f j)|√

E( f )+ ε
≤ α

√
ε.

The latter implies that
√

E( f j)+ ε ≤ 2
√

E( f )+ ε. Therefore,

Probz∈Zm

{
sup
f∈F

E( f )−Ez( f )√
E( f )+ ε

≥ 4α
√

ε

}
≤

J

∑
j=1

Prob

{
E( f j)−Ez( f j)√

E( f j)+ ε
≥ α

√
ε

}

which is bounded byJ ·exp
{
−3α2mε

2q+3

}
.

TakeF to be the set (55). The following covering number estimate will be used.

Lemma 20 Let F be given by (55) with R≥ κ̃ and B= 1+ κR. Its covering number in C(X) can
be bounded as follows:

N (F ,η) ≤ N
( η

2R

)
, ∀η > 0.

Proof It follows from the fact‖π( f )−π(g)‖∞ ≤ ‖ f −g‖∞ that

N (F ,η) ≤ N (BR+[−B,B],η) .

The latter is bounded by{(κ+ 1
κ̃)2R

η +1}N
(
BR, η

2

)
since2B

η ≤ (κ+ 1
κ̃)2R

η and

‖( f ∗ +bf )− (g∗ +bg)‖∞ ≤ ‖ f ∗−g∗‖∞ + |bf −bg|.

Note that anη
2R-covering ofB is the same as anη2 -covering ofBR. Then our conclusion follows

from Definition 6.

We are in a position to state our main result on the error analysis. RecallθM in (25).

Theorem 21 Let fK,C ∈ H K , M ≥ ‖V(y, fK,C(x))‖∞, and0 < β ≤ 1. For everyε > 0, we have

E(π( fz))−E( fq) ≤ (1+β)(ε+D(C))

with confidence at least1−F(ε) where F: R+ → R+ is defined by

F(ε) := exp

{
− mε2

2M(∆+ ε)

}
+N

(
β(ε+D(C))3/2

q2q+3Σ

)
exp

{
−3mβ2(D(C)+ ε)2

2q+9(∆+ ε)

}
(58)

with ∆ := D(C)+E( fq) andΣ :=
√

2C(∆+ ε)(∆+θMε).
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Proof Let ε > 0. We prove our conclusion in three steps.

Step 1:EstimateEz( fK,C)−E( fK,C).
Consider the random variableξ = V(y, fK,C(x)) with 0 ≤ ξ ≤ M. If M > 0, sinceσ2(ξ) ≤

ME( fK,C)≤M(D(C)+E( fq)), by the one-side Bernstein inequality we obtainEz( fK,C)−E( fK,C)≤
ε with confidence at least

1−exp

{
− mε2

2(σ2(ξ)+ 1
3Mε)

}
≥ 1−exp

{
− mε2

2M(∆+ ε)

}
.

If M = 0, thenξ = 0 almost everywhere. HenceEz( fK,C)−E( fK,C) = 0 with probability 1. Thus,

in both cases, there existsU1 ∈ Zm with measure at least 1−exp
{
− mε2

2M(ε+∆)

}
such thatEz( fK,C)−

E( fK,C) ≤ θMε wheneverz∈U1.

Step 2:EstimateE(π( fz))−Ez(π( fz)).
Let F be given by (55) withR =

√
2C(∆+θMε) and B = 1+ κR. By Proposition 4,R≥√

2CD(C) ≥ κ̃. Applying Lemma 19 toF with ε̃ := D(C)+ ε > 0 andα = β
8

√
ε̃/(ε̃+E( fq)) ∈

(0,1/8], we have

E( f )−Ez( f ) ≤ 4α
√

ε̃
√

E( f )−E( fq)+ ε̃+E( fq), ∀ f ∈ F (59)

for z∈U2 whereU2 is a subset ofZm with measure at least

1−N
(

F ,
αε̃

q2q−1

)
exp

{
− 3mα2ε̃

2q+3

}
≥ 1−N

(β(ε+D(C))3/2

q2q+3Σ

)
exp

{
− 3mβ2(D(C)+ ε)2

2q+9(∆+ ε)

}
.

In the above inequality we have used Lemma 20 to bound the covering number.
Forz∈U1∩U2, we have

1
2C

‖ f ∗z ‖2
K ≤ Ez( fK,C)+

1
2C

‖ f ∗K,C‖2
K ≤ E( fK,C)+θMε+

1
2C

‖ f ∗K,C‖2
K

which equals toD(C)+θMε+E( fq) = ∆+θMε. It follows that‖ f ∗z ‖K ≤R. By Lemma 16,|bz| ≤B.
This means,π( fz) ∈ F and (59) is valid forf = π( fz).

Step 3:BoundE(π( fz))−E( fq) using (14).
Let α andε̃ be the same as in Step 2. Forz∈U1

T

U2, bothEz( fK,C)−E( fK,C) ≤ θMε ≤ ε and
(59) with f = π( fz) hold true. Then (14) tells us that

E(π( fz))−E( fq) ≤ 4α
√

ε̃
√

(E(π( fz))−E( fq))+ ε̃+E( fq)+ ε̃.

Denoter := E(π( fz))−E( fq)+ ε̃+E( fq) > 0, we see that

r ≤ ε̃+E( fq)+4α
√

ε̃
√

r + ε̃.

It follows that √
r ≤ 2α

√
ε̃+
√

4α2ε̃+2ε̃+E( fq).

Hence

E(π( fz))−E( fq) = r − (ε̃+E( fq)) ≤ ε̃+8α2ε̃+4αε̃
√

4α2 +2+E( fq)/ε̃.
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Putting the choice ofα into above, we find that

E(π( fz))−E( fq) ≤ ε̃+
β2ε̃2

8(ε̃+E( fq))
+

βε̃
2

√
ε̃

ε̃+E( fq)

√
β2ε̃

16(ε̃+E( fq))
+2+

E( fq)

ε̃

which is bounded by(1+β)ε̃ = (1+β)(ε+D(C)).
Finally, noting that the measure ofU1

T

U2 is at least 1−F(ε), the proof is finished.

Observe that the functionF is strictly decreasing andF(0) > 1, lim
ε→∞

F(ε) = 0. Hence for every

0 < δ < 1 there exists a unique numberε > 0 satisfyingF(ε) = δ. Also, for a fixedε > 0, F(ε) < δ
for sufficiently largem, sinceF(ε) can be written asam+cbm with 0< a,b< 1. Therefore, Theorem
21 can be restated in the following form.

Corollary 22 Let F be given in Theorem 21. For every0 < δ < 1, defineε(δ,m,C,β) > 0 to be the
unique solution to the equation F(ε) = δ. Then with confidence at least1−δ, (20) holds. Moreover,
lim

m→∞
ε(δ,m,C,β) = 0.

Now we can prove the statements we made in Section 2 for the deterministic case.

Proof of Proposition 8. Take β = 1. SinceR ( fc) = 0, we know thatfq = fc, E( fq) = 0 and
∆ = D(C). ThenΣ ≤

√
2C(D(C)+θMε)

√
D(C)+ ε and

N

(
β(ε+D(C))3/2

q2q+3Σ

)
≤ N

(
ε

q2q+3M

)
.

The function valueF(ε) can be bounded by

exp

{
− mε2

2M(D(C)+ ε)

}
+N

(
ε

q2q+3M

)
exp

{
− 3mε

2q+9

}
.

The first term above is bounded byδ/2 whenε ≥ 4M log(2/δ)
m + D(C). The second term is at most

δ/2 if ε ≥ ε∗. Therefore

ε(δ,m,C,β) ≤ max

{
4M log(2/δ)

m
+D(C),ε∗

}
,

and (26) follows from Theorem 21.
(a) When (23) holds, noting that the left side of (27) is strictly decreasing, it is easy to check

that

ε∗ ≤ 2q+9
{

1+c((q+4) log8)s
}

(logm+ log(CD(C))+ log(CθM))s+ log(2/δ)

m
.

This yields the stated bound forε∗ in the case (a).
(b) If (24) is true, then the function defined by

F̃(ε) := c
(q2q+4)s{(2CD(C))s/2 +(2Cε)s/2}

εs − 3mε
2q+9
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satisfiesF̃(ε∗) ≥ log(δ/2). SinceF̃ is a decreasing function,ε∗ ≤ ε̃∗ whenever̃F(ε̃∗) ≤ log(δ/2).
If ε̃∗ ≥ rm−1/(s+1)(2CD(C))s/(2s+2) log 2

δ with

r ≥ 2q+8κ̃−s/(s+1) +q2q+10c1/(s+1)/ log2, (60)

then

c(q2q+4)s(2CD(C))s/2

(ε̃∗)s − m̃ε∗

2q+8 ≤ rms/(s+1)

2q+8 (2CD(C))
s

2s+2 log
2
δ

{
c(q2q+4)s2q+8

(r log(2/δ))s+1 −1

}
.

Sincer ≥ q2q+10c1/(s+1)/ log2, according to Proposition 4, this can be bounded by

r
2q+8ms/(s+1)(2CD(C))s/(2s+2) log

2
δ

{
−1

2

}
≤ r

2q+9 κ̃s/(s+1) log
δ
2
≤ 1

2
log

δ
2
.

Here we have used the conditionr ≥ 2q+8κ̃−s/(s+1).
In the same way, if̃ε∗ ≥ rm−2/(s+2)(2C)s/(s+2) log 2

δ with

r ≥ 2q+9 +q24q+5c2/(s+2)/ log2, (61)

we have forC≥ 1/2,

c(q2q+4)s
(

2C
ε̃∗

)s/2

− m̃ε∗

2q+9 ≤ 1
2

log
δ
2
.

Combining the above two bounds, we obtain the desired estimate (28) withc̃ determined by the
two conditions (60) and (61). The proof of Proposition 8 is complete.

In the general case, the following bounds hold.

Corollary 23 For every0 < δ ≤ 1, with confidence at least1−δ there holds

E(π( fz))−E( fq) ≤ 2max

{2q+1

(
1+κ

√
2CD̃(C)

)q/2√
log(2/δ)

√
m

,ε∗
}

+2D̃(C),

whereε∗ is the solution to the equation

logN

(
ε3/2

q4q+2
√

2C

)
− 3mε2

4q+5 = log
δ
2
. (62)

Proof Takeβ = 1 and fK,C = f̃K,C. By Lemma 16,‖ f̃K,C‖∞ ≤ 1+ 2κ
√

2CD̃(C) and we can take

M = 2q(1+ κ
√

2CD̃(C))q. Also, ∆ = D̃(C) + E( fq) ≤ 1. It follows that Σ ≤
√

2C(∆ + ε) ≤√
2C(1+ ε).

SinceE(π( fz)) ≤ 2q, we only need to consider the rangeε ≤ 2q to boundε(δ,m,C,β). In this
range,

N

(
β(ε+ D̃(C))3/2

q2q+3Σ

)
≤ N

(
ε3/2

q4q+2
√

2C

)
.
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ThenF(ε) can be bounded by

exp

{
− mε2

4q+1(1+κ
√

2CD̃(C))q

}
+N

(
ε3/2

q4q+2
√

2C

)
exp

{
−3mε2

4q+5

}
.

ThusF(ε) ≤ δ if

ε ≥ max

{2q+1(1+κ
√

2CD̃(C))q/2
√

log(2/δ)
√

m
,ε∗
}

whereε∗ is the solution to the equation (62). This together with Theorem 21 yields the desired
estimate.

The bound for the sample error derived in Corollary 23 may be further improved by the well
developed empirical process techniques in the literature. We shall discussthis elsewhere.

The total error (14) consists of two parts. We shall not discuss the possibility of further improv-
ing the sample error bound here, because it is of the same importance to understand the regulariza-
tion error. This becomes more important when not much estimate is available for the regularization
error. In the previous sections, we could computeD(C) explicitly only for special cases. Most of
the time,ρ is not strictly separable, even not weakly separable. Hence it is desirable to estimate
D(C) explicitly for general distributions. In the following we shall choosefK,C = f̃K,C and estimate

D̃(C).

6. Error Analysis by Approximation in Lq Spaces

The main result on the convergence analysis given in Section 5 enables usto have some nice obser-
vations. These follow from facts on approximation inLq spaces.

Lemma 24 If 1 < q≤ 2, then

(1+u)
q
+ ≤ 1+ |u|q +qu, ∀u∈ R.

Proof Set the continuous functionf (u) := 1+ |u|q +qu− (1+u)
q
+. Then f (0) = 0.

Since 0< q−1≤ 1, for u > 0 we have

f ′(u) = q
(
1+uq−1− (1+u)q−1)≥ 0.

Hencef (u) ≥ 0 for u≥ 0.
For−1 < u < 0, we see that

f ′(u) = q
(
1− (−u)q−1− (1+u)q−1)= q

(
1−|u|q−1− (1−|u|)q−1)≤ 0.

Hencef (u) ≥ 0 for−1 < u < 0.
Finally, whenu < −1, there holds

f ′(u) = q
(
1− (−u)q−1)≤ 0.

Therefore, we also havef (u) ≥ f (−1) ≥ 0 for u≤−1.
Thus f (u) ≥ 0 on the whole real line and Lemma 24 is proved.
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Theorem 25 Let f : X → R be measurable. Then

E( f )−E( fq) ≤





‖ f − fq‖q
Lq

ρX
, if 1 < q≤ 2,

q2q−1‖ f − fq‖Lq
ρX

(
2q−1 +‖ f − fq‖q−1

Lq
ρX

)
, if q > 2.

Proof Since| fq(x)| ≤ 1, by the second inequality of Lemma 17, for eachx∈ X we have

E( f |x)−E( fq|x) =
Z

Y
(1−y f(x))q

+− (1−y fq(x))
q
+dρ(y|x)

≤ q4q−1| f (x)− fq(x)|+q2q−1| f (x)− fq(x)|q.

It follows that

E( f )−E( fq) =
Z

X
E( f |x)−E( fq|x)dρX ≤ q4q−1‖ f − fq‖L1

ρX
+q2q−1‖ f − fq‖q

Lq
ρX

.

Then the inequality for the caseq > 2 follows from the Ḧolder inequality.
Turn to the case 1< q≤ 2. It is sufficient to show that for eachx∈ X,

E( f |x)−E( fq|x) ≤ | f (x)− fq(x)|q. (63)

The definition (10) offq tells us that

(1+ fq(x))
q−1 =

2q−1(1+ fρ(x))

{(1+ fρ(x))1/(q−1) +(1− fρ(x))1/(q−1)}q−1

and

(1− fq(x))
q−1 =

2q−1(1− fρ(x))

{(1+ fρ(x))1/(q−1) +(1− fρ(x))1/(q−1)}q−1
.

These expressions in connection with (45) imply

E( f |x) =
(1+ f (x))q

+(1− fq(x))q−1

(1+ fq(x))q−1 +(1− fq(x))q−1 +
(1− f (x))q

+(1+ fq(x))q−1

(1+ fq(x))q−1 +(1− fq(x))q−1

and together with (48)

E( fq|x) =
2(1− fq(x))q−1(1+ fq(x))q−1

(1+ fq(x))q−1 +(1− fq(x))q−1 .

Thus (63) follows from the following inequality (by takingt = f (x) andθ = fq(x)):

(1+ t)q
+(1−θ)q−1

(1+θ)q−1 +(1−θ)q−1 +
(1− t)q

+(1+θ)q−1

(1+θ)q−1 +(1−θ)q−1

−2
(1−θ)q−1(1+θ)q−1

(1+θ)q−1 +(1−θ)q−1 ≤ |t −θ|q, ∀t ∈ R,θ ∈ (−1,1).

(64)

What is left is to verify the inequality (64). Since−1 < θ < 1, we have

(1+ t)q
+(1−θ)q−1 = (1−θ2)q−1(1+θ)

(
1+ t
1+θ

)q

+

= (1−θ2)q−1(1+θ)

(
1+

t −θ
1+θ

)q

+

.
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By Lemma 24 withu = (t −θ)/(1+θ), we see that

(1+ t)q
+(1−θ)q−1 ≤ (1−θ2)q−1(1+θ)

(
1+

∣∣∣∣
t −θ
1+θ

∣∣∣∣
q

+q
t −θ
1+θ

)
.

In the same way, by Lemma 24 withu = −(t −θ)/(1−θ), we have

(1− t)q
+(1+θ)q−1 ≤ (1−θ2)q−1(1−θ)

(
1+

∣∣∣∣
t −θ
1−θ

∣∣∣∣
q

−q
t −θ
1−θ

)
.

Combining the above two estimates, we obtain

(1+ t)q
+(1−θ)q−1 +(1− t)q

+(1+θ)q−1 ≤ 2(1−θ2)q−1 + |t −θ|q
{
(1−θ)q−1 +(1+θ)q−1} .

This proves our claim (64), thereby Theorem 25.

Recall theK-functional given by (19).

Theorem 26 For each C> 0, there holds

D̃(C) ≤ K ( fq,
1

2C
).

Proof The case 1< q≤ 2 is an easy consequence of Theorem 25.
Turn to the caseq > 2. The special choicef = 0+0∈ H K and the fact‖ fq‖Lq

ρX
≤ 1 tell us that

for anyt > 0,

K ( fq, t) = inf
f∈H K

‖ f− fq‖L
q
ρX

≤1

{
q2q−1(2q−1 +1)‖ f − fq‖Lq

ρX
+ t‖ f ∗‖2

K

}
.

According to Theorem 25, forf ∈ H K with ‖ f − fq‖Lq
ρX

≤ 1, we have

E( f )−E( fq) ≤ q2q−1(2q−1 +1)‖ f − fq‖Lq
ρX

.

Thus,

D̃(C) = inf
f∈H K

{
E( f )−E( fq)+

1
2C

‖ f ∗‖2
K

}
≤ K ( fq,

1
2C

)

and the proof of Theorem 26 is complete.

We can now derive several observations from Theorem 26.
The first observation says that the SVMq-classifier converges whenfq lies in the closure ofH K

in Lq
ρX . In particular, for any Borel probability measureρ, this is always the case ifK is a universal

kernel sinceC(X) is dense inLq
ρX .

Corollary 27 If fq lies in the closure ofH K in Lq
ρX , then for everyε > 0 and0 < δ < 1, there exist

Cε > 0, m0 ∈ N and a sequence Cm with lim
m→∞

Cm = ∞ such that

Probz∈Zm{R (sgn( fz))−R ( fc) ≤ ε} ≥ 1−δ, ∀m≥ m0, Cε ≤C≤Cm.
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Proof Since fq lies in the closure ofH K in Lq
ρX , for everyε > 0 there is somefε = f ∗ε +bε ∈ H K

such thatq2q(2q−1+1)‖ fε − fq‖Lq
ρX

≤ ε2/16. TakeCε = 8‖ f ∗ε ‖2
K/ε2. Then for anyC≥Cε, we have

1
2C‖ f ∗ε ‖2

K ≤ ε2/16. Theorem 26 tells us that̃D(C) ≤ ε2/8.
Takem0 such that

2q+1(1+κ
√

2Cε)
q/2
√

log(2/δ)√
m0

≤ ε2

8

and

logN

(
ε3

q4q+4
√

2Cε

)
− 3m0ε4

4q+8 ≤ log
δ
2
.

Also, we chooseCm such that

2q+1(1+κ
√

2Cm)q/2
√

log(2/δ)√
m

<
ε2

8

and

logN

(
ε3

q4q+4
√

2Cm

)
− 3mε4

4q+8 ≤ log
δ
2
.

Then by Corollary 5.2,ε(δ,m,C,β) ≤ ε2

8 whenm≥ m0 andCε ≤C ≤Cm. Together with Theorem
14, our conclusion is proved.

Our second observation from Theorem 26 concerns nonuniversalkernels which nonetheless
ensures the convergence of the SVMq-classifier. The point here is thatHK is not dense inC(X),
but after adding the offset the spaceH K becomes dense.

Example 2 Let K be a Mercer kernel on X= [0,1]:

K(x,y) = ∑
j∈J

a j(x ·y) j ,

where J is a subset ofN, aj > 0 for each j∈ J, and ∑
j∈J

a j < ∞. Note that this kernel satisfies

K0(y) ≡ 0, hence f(0) = 0 for all f ∈ HK . Hence the spaceHK is not dense in C(X) and K is not
an universal kernel. But if∑

j∈J

1
j = ∞, thenH K is dense in C(X) (Zhou 2003a) and hence in Lq

ρX .

Therefore, the SVM q-classifier associated with the (identical) kernel K converges.

Remark 28 In Section 4 and the proof of Theorem 21, we have shown how the offsetinfluences the
sample error. Proposition 4 and Example 2 tell that it may also influence theapproximation error.
However, our analysis in the following two sections will not focus on this point and it may be an
interesting topic.

In practical applications, one can use varying kernels for (3).

Definition 29 Let{Kd}d∈N be a sequence of Mercer kernels on X. We say that the SVM q-classifier
associated with the kernels{Kd} converges if for a sequence{Cm}m∈N of positive numbers, fz

defined by (3) with K= Kd and C= Cm satisfies the following:
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For every Borel probability measureρ on Z, and0 < δ < 1, ε > 0, for sufficiently larged there
is somemd ∈ N such that

Probz∈Zm{R (sgn( fz))−R ( fc) ≤ ε} ≥ 1−δ, ∀m≥ md.

For a universal kernelK, one may takeKd to be identicallyK and the convergence holds. But
the kernels could change such as the polynomial kernels (Boser, Guyonand Vapnik, 1992). Our
third observation from Theorem 26 is to confirm the convergence of the SVM q-classifiers with
these kernels.

Proposition 30 For any 1 < q < ∞,n ∈ N and X ⊂ R
n, the SVM q-classifier associated with

{Kd}∞
d=1, the polynomial kernels Kd(x,y) = (1+x ·y)d, converges.

Proposition 30 is a consequence of a quantitative result below.
Let Pd be the space of all polynomials of degree at mostd. It is a RKHSHKd with the Mercer

kernelKd(x,y) = (1+ x · y)d. The rich knowledge from approximation theory tells us that for an
arbitrary Borel probability measure onZ, there is a sequence of polynomials{pd ∈ Pd}∞

d=1 such
that lim

d→∞
‖ fq− pd‖Lq

ρX
= 0. The rate of this convergence depends on the regularity of the function

fq (hence the functionfρ) and the marginal distributionρX. With this in hand, we can now state the
result on the convergence of theq-classifier with polynomial kernelsKd.

Corollary 31 Let X⊂ R
n, andρ be an arbitrary Borel probability measure on Z. Let d∈ N and

Kd(x,y) = (1+x ·y)d be the polynomial kernel. Set‖X‖ := sup
x∈X

|x|. Let{pd ∈ Pd}∞
d=1 satisfy Ed :=

‖ fq − pd‖Lq
ρX

→ 0 (as d→ ∞). Set N:= (n+ d)!/(n!d!) + 1 and 0 < σ < 2
q. Then there exists

mq,σ ∈ N such that for m≥ mq,σ and C= mσ, for every0 < δ < 1, with confidence1−δ there holds

R (sgn( fz))−R ( fc) ≤
√

q2q+1
√

Ed +
‖pd‖Kd

mσ/2
+

2q+5(N log(2
δ))1/4(1+‖X‖2)qd/8

m
1
4−

qσ
8

.

Proof Takep∗d = pd with zero offset in theK-functional. Then by Theorem 26,

D̃(C) ≤ K ( fq,
1

2C
) ≤ q2q−1(2q−1 +1)Ed +

1
2C

‖pd‖2
Kd

.

The covering numbers of the finite dimensional spacePd (e.g. Cucker and Zhou, 2004) and (22)
give us the estimate:

N (η) ≤ (κ+
1
κ̃
)

(
2
η

+1

)N

,

whereN−1 = (n+ d)!/(n!d!) is the dimension of the spacePd(R
n). Also, κ =

√
‖Kd‖∞ ≤ (1+

‖X‖2)d/2.
TakeC = mσ. By Corollary 23, solving the equation (62) yields

ε(δ,m,C,β) ≤
(2q+5

√
N+

√
log(κ+ 1

κ̃)(logm+ log(2/δ))1/2

√
m

+
4q+2κ

q
2

√
log(2

δ)

m
1
2−

qσ
4
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which is bounded by 45+q
√

N log(2
δ)κq/2m

qσ
4 − 1

2 for m≥ mq,σ. Heremq,σ is an integer depending

on q,σ (but not onm, d or δ). Then for eachm≥ mq,σ, with confidence 1− δ the desired estimate
holds true.

Remark 32 Note that Pd is a finite dimension space. Thus the norms‖ · ‖Kd and‖ · ‖Lq
ρX

are equiv-

alent for a fixed d whenρX is non-degenerate. It would be interesting to compare the norm‖p‖Kd

with ‖p‖Lq
ρX

for p∈ Pd as d tends to infinity.

Proof of Proposition 30.For everyε > 0, there exists somed0 ∈N such that
√

q2q−1√Ed ≤ ε/2 for

everyd ≥ d0. Then by Corollary 31 we can find somemq,σ ≤ md ∈ N such thatm−σ/2
d ‖pd‖Kd ≤ ε/4

and 2q+5(N log(2/δ))1/4(1+‖X‖2)dq/8m
qσ
8 − 1

4
d ≤ ε/4. Then for anym≥ md we haveR (sgn( fz))−

R ( fc) ≤ ε with confidence 1−δ. This proves Proposition 30.

7. Rate of Convergence for theq-Norm Soft Margin Classifier

Corollary 23 and Theorem 26 enable us to get the convergence rate forthe SVMq-classifier. The
rate depends on theK-functionalK ( fq, t). It can be characterized by the quantity (Smale and Zhou
2003; Zhou 2003b)

Iq(g,R) := inf
f∈H K

‖ f∗‖K≤R

{
‖g− f‖Lq

ρX

}
. (65)

Define

Jq( fq,R) :=

{
(Iq( fq,R))q , if 1 < q≤ 2,
q2q−1(2q−1 +1)Iq( fq,R), if q > 2.

Then the following corollary holds true.

Corollary 33 For any t> 0 there holds

K ( fq, t) ≤ inf
R>0

{Jq( fq,R)+ tR2}.

One may choose appropriateR to estimate the convergence rate ofK ( fq, t), which together with
Corollary 23 gives the convergence rate of theV-risk and a strategy of choosing the regularization
parameterC. In general, the choice ofR depends on the regularity offq and the kernelK. Let us
demonstrate this by examples.

In what follows letX ⊂ R
n have Lipschitz boundary andρ be a probability measure such that

dρX = dx is the Lebesgue measure. Considerq = 2 and thusfq = fρ. We use the approximation
error studied in Smale and Zhou (2003) (see also Niyogi and Girosi (1996) for related discussion):

I∗2(g,R) := inf
f∗∈HK

‖ f∗‖K≤R

{‖g− f ∗‖L2}

to bound the termI2( fρ,R). With the choicebf = 0 we obtain

I2( fρ,R) ≤ I∗2( fρ,R).

Note that we disregard the influence of the offset here and thus the rate need not be optimal.
The first example includes spline kernels (Wahba 1990).
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Example 3 Let X⊂ R
n and K be a Mercer kernel such thatHK is the Sobolev space Hr(X) with

r > n/2. If fρ lies in the Sobolev space Hs(X) with 0 < s< r, then

E(π( fz))−E( fρ) = O

(√
logm+C√

m
+

Cn/(4r+3n)

m2r/(4r+3n)

)
+O

(
C−s/r

)
.

Thus, C should be chosen such that C→ ∞, C/m→ 0 as m→ ∞.

Proof It was shown in Smale and Zhou (2003, Theorem 3.1) that for 0< θ < 1, I∗2( fρ,R) =
O(R−θ/(1−θ)) if and only if fρ lies in the interpolation space(L2

ρX
,HK)θ,∞. It is well known that

Hs(X) ⊂ (L2,Hr(X))s/r,∞ for 0 < s< r. HereHK = Hr(X) anddρX = dx. Therefore, the assump-
tion fρ ∈ Hs(X) tells us thatfρ ∈ (L2

ρX
,HK)s/r,∞. Hence there holds

I2( fρ,R) ≤ I∗2( fρ,R) ≤CρR−s/(r−s)

for some constantCρ. ChooseR= C(r−s)/r
ρ C(r−s)/2r to obtain

K ( fρ,
1

2C
) ≤ (I2( fρ,R))2 +

R2

2C
≤ 3

2
C2(r−s)/r

ρ C−s/r .

Using the well known covering number estimates for Sobolev spaces

logN (BR,η) ≤Cr

(
1
η

)n/r

and solving the equation (62), we see that

ε∗ ≤ 26

√
logκ+ logm+ logC+ log(2/δ)

m
+26+3n/(4r)

√
Cr

Cn/(4r+3n)

m2r/(4r+3n)
.

This proves the conclusion.

Example 4 Let σ > 0,s> 0 and K be the Gaussian kernel K(x,y) = exp
{
− |x−y|2

σ2

}
.

(a) If fρ lies in the interpolation space(L2
ρX

,HK)θ,∞ for some0 < θ < 1, that is,K ( fρ, t) ≤Cθtθ

for some constant Cθ, then for any0 < δ < 1, with confidence1−δ, there holds

E(π( fz))−E( fρ) = O

(√
C+(logm)n+1

√
m

)
+O

(
C−θ

)
.

This implies the parameter C should be taken to satisfy C→ ∞ and C/m→ 0 as m→ ∞.
An asymptotic optimal choice is C= O(m1/(1+2θ)). With this choice, the convergence rate is
O(m−θ/(1+2θ)).

(b) If fρ ∈ Hs(X) with s> 0, then for any0 < δ < 1, with confidence1−δ, we have

E(π( fz))−E( fρ) = O

(√
C+(logm)n+1

√
m

)
+O

(
(logC)−s/2

)
.

An asymptotically optimal choice is C= O
(

m
(logm)s

)
which gives the convergence rate O((logm)−s/2).
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Proof Solving the equation (62) with the covering number estimate (23) yields

ε∗ = O

(√
(1+c)(logC+ logm)n+1

√
m

)
.

Then the statement in (a) follows easily from Corollary 23, Theorem 21 andCorollary 33.
To see the conclusion in (b), we notice that the assumptionfρ ∈ Hs(X) provides the approxima-

tion error estimates (Smale and Zhou, 2003; Zhou, 2003b)

I2( fρ,R) ≤ I∗2( fρ,R) ≤Cs(logR)−s/4

for everyR> Cs, whereCs is a constant depending ons,σ,n and the Sobolev norm offρ. Choose

R=
√

2C(logC)−s/4 to obtain

K ( fρ,
1

2C
) ≤ (I2( fρ,R))2 +

R2

2C
≤ (2sC2

s +1)(logC)−s/2.

Then the desired bound follows from Theorem 26 and the above established bound forε∗.

It was shown in Smale and Zhou (2003) that for the Gaussian kernel in Example 4,I∗2(g,R) =
O(R−ε) with ε > 0 only if g is C∞. Hence logarithmic convergence rate is expected for a Sobolev
function fρ. However, in practice, one often chooses the different variancesσ of the Gaussian
kernel according to the different sample sizem. With this flexibility, the regularization error can be
improved greatly and polynomial convergence rates are possible.
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Appendix A. Error Comparison for a General Loss Function

In this appendix for a general convex loss function we bound the excess misclassification error by
the excessV-risk. Here the loss function takes the form

V(y, f (x)) = φ(y f(x))

for a univariate functionφ : R → R+.
For eachx∈ X, we denote

E( f |x) :=
Z

Y
V(y, f (x))dρ(y|x), (66)
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thenE( f |x) = Q(η(x), f (x)). HereQ : [0,1]× (R∪{±∞}) → R+ is given by

Q(η, f ) = ηφ( f )+(1−η)φ(− f ),

andη : X → R is defined byη(x) := P(Y = 1|x). Set

f ∗φ (η) := arg min
f∈R∪{±∞}

Q(η, f ).

Then fV
ρ (x) = f ∗φ (η(x)). The main result of Zhang (2004) can be stated as follows.

Theorem A Letφ be convex. Assume f∗
φ (η) > 0 whenη > 0.5. Assume there exists c> 0 and s≥ 1

such that for allη ∈ [0,1],

|0.5−η|s ≤ cs(Q(η,0)−Q(η, f ∗φ (η))
)
, (67)

then for any measurable function f(x):

R (sgn( f ))−R ( fc) ≤ 2c
(

E( f )−E( fV
ρ )
)1/s

.

Further analysis was made by Bartlett, Jordan and McAuliffe (2003). Forexample, it was proved
in Bartlett, Jordan and McAuliffe (2003, Theorem 6) that for a convex functionφ, f ∗φ (η) > 0 for any
η > 0.5 if and only if φ is differentiable at 0 andφ′(0) < 0. Borrowing some ideas from Bartlett,
Jordan and McAuliffe (2003), we can derive a simple criterion for the condition (67) withs= 2.
The existence ofφ′′(0) means that the functionφ′(x) is well defined in a neighborhood of 0 and is
differentiable at 0. Note that the convexity ofφ impliesφ′′(0) ≥ 0.

Theorem 34 Letφ : R→R+ be a convex function such thatφ′′(0) exists. Ifφ′(0) < 0 andφ′′(0) > 0,
then (67) holds for s= 2. Hence for any measurable function f :

R (sgn( f ))−R ( fc) ≤ 2c
√

E( f )−E( fV
ρ ).

Proof By the definition ofφ′′(0), there exists some 1/2≥ c0 > 0 such that
∣∣∣∣
φ′( f )−φ′(0)

f
−φ′′(0)

∣∣∣∣≤
φ′′(0)

2
, ∀ f ∈ [−c0,c0].

This implies

φ′(0)+φ′′(0) f − φ′′(0)

2
| f | ≤ φ′( f ) ≤ φ′(0)+φ′′(0) f +

φ′′(0)

2
| f |.

If η > 1/2, then for 0≤ f ≤ c0,

∂Q
∂ f

(η, f ) = ηφ′( f )− (1−η)φ′(− f ) ≤ (2η−1)φ′(0)+φ′′(0) f +
φ′′(0)

2
f .

Thus for 0≤ f ≤ ∆η := min{−φ′(0)
φ′′(0) (η− 1

2),c0}, we have

∂Q
∂ f

(η, f ) ≤ (2η−1)φ′(0)+
3
2

φ′′(0)
−φ′(0)

φ′′(0)
(η− 1

2
) ≤ φ′(0)

2
(η− 1

2
) < 0.
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Therefore as a function of the variablef , Q(η, f ) is strictly decreasing on the interval[0,∆η]. But
f ∗φ (η) > 0 is its minimal point, hence

Q(η,0)−Q(η, f ∗φ (η)) ≥ Q(η,0)−Q(η,∆η) ≥−φ′(0)

2
(η− 1

2
)∆η.

When−φ′(0)
φ′′(0) (η− 1

2) > c0, we have∆η = c0 ≥ 2c0(η− 1
2). Hence

Q(η,0)−Q(η, f ∗φ (η)) ≥ −φ′(0)

2
min

{
2c0,

−φ′(0)

φ′′(0)

}
(η− 1

2
)2.

That is, (67) holds withs= 2 and

c = max

{√
2φ′′(0)

−φ′(0)
,

√
1

−φ′(0)c0

}
.

The proof forη < 1/2 is the same by estimating the upper bound of∂Q
∂ f (η, f ) for f < 0.

Turn to the special loss functionV = Vq given in (6) byφ(t) = (1− t)q
+. Applying Theorem 34,

we see that the functionφ satisfiesφ′(0) = −q < 0 andφ′′(0) = q(q−1) > 0. This verifies (40) and
the constantc can be obtained from the proof of Theorem 34.
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