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Abstract

In this papet we consider the problem of performing Bayesian model-ajiegaover a class of
discrete Bayesian network structures consistent with gbardering and with bounded in-degree

k. We show that foN nodes this class contains in the worst-case at e@zz)wz) distinct net-
work structures, and yet model averaging over these stiegttan be performed usir@{('ﬁ) -N)
operations. Furthermore we show that there exists a singye®an network that defines a joint
distribution over the variables that is equivalent to mal@raging over these structures. Although
constructing this network is computationally prohibitivee show that it can be approximated by a
tractable network, allowing approximate model-averagedability calculations to be performed
in O(N) time. Our result also leads to an exact and linear-timetismido the problem of averaging
over the 2 possible feature sets in a naive Bayes model, providing act 8ayesian solution to
the troublesome feature-selection problem for naive Belgssifiers. We demonstrate the utility of
these techniques in the context of supervised classifitatlmwing empirically that model averag-
ing consistently beats other generative Bayesian-netlvaged models, even when the generating
model is not guaranteed to be a member of the class beinggaceaver. We characterize the
performance over several parameters on simulated anevoeld-data.

Keywords: Bayesian networks, Bayesian model averaging, classiitatiaive Bayes classifiers,
feature selection

1. Introduction

A probabilistic modelM over a set of variableX, is a parameterization of the joint distribution
P(X) overX. There are many practical uses R{X), including the ability to calculate expectations,
E(X), of configurations of variables, the ability to calculate thest likely explanatiomf some
observed evidence, the ability tgppdate beliefabout some variables given some other variables,
P(Xi,X; | X’), etc. In short virtually any probabilistic quantity of interest involvoing tlaeiables

X can be calculated ond¥X) is known. Bayesian networks (BNs) (cf., Pearl, 1988) are a popular

1. This is a combined and expanded version of previous conferemtavarkshop papers (Dash and Cooper, 2002,
2003).
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class of graphical probabilistic models that allB\@X) to be specified in practice even whpfj is
very large, by explicating independence between the variables

Many algorithms for learning BNs from data (Verma and Pearl, 1991; Goapd Herskovits,
1992; Spirtes, Glymour, and Scheines, 1993; Heckerman, Geigeglaokiering, 1995; Friedman,
Geiger, and Goldszmidt, 1997) have been used effectively to learn tiitustr of a BN model from
data, typically by performing a search over structures using the pospeoioability, P(S | D), of the
structure given the data as a measure of quality. While learning a partidilatrBcture has shown
to be useful, it suffers from the fact that a single model makes strongpémdience assumptions
among the variables of interest that may not be true, or may only be apptektrae in reality.
That is, the process of learning a single network affords no way dfigag the uncertainty in the
model structure. The most principled alternative to selecting a particulaoriestructure, is to cal-
culate the full joint posterioP(X | D) by averaging over all possible BN structures. Unfortunately,
the space of network structures is super-exponential in the number @l maxihbles, and thus an
exact method for full model-averaging is likely to be intractable.

One especially common use for learning the joint distribution from datapsrvised classifica-
tion. The general supervised classification problem seeks to create a nasedl ¢n labelled data
D, which can be used to classify future vectors of featéires {F;,F,, ..., Fy} into one of various
classes of interest. A probabilistic model accomplishes this goal by calcutagmmpsterior proba-
bility, P(C | F), of the class given the features. One of the simplest probabilistic clasddiethis
task is the naive classifier (cf., Duda and Hart, 1973), which, withoutrinfpany structural infor-
mation from the database, can still perform surprisingly well at the claadictask (Domingos
and Pazzani, 1997; Friedman, 1997; Ng and Jordan, 2002). Clasisifizising a single Bayesian
network model and no missing feature-vector data can be perforn@@irtime. When the feature
vector is incomplete then standard algorithms (e.g., Lauritzen and Spiegelh@88j for Bayesian
network inference can be used for classification. The drawbaclkdeaftsrg a single model for clas-
sification manifests themselves as over-fitting of the data, leading to poaifickt#sn accuracy on
future data sets; however, model averaging has been shown to i@drefitting and provide better
generalization (Madigan and Raftery, 1994).

In this paper we consider the possibility of performing exact and appragimadel-averaging
(MA) over a particular class of structures rather than over the gespeale of directed acyclic
graphs (DAGs). We show that exact model averaging over the claBsldtructures consistent
with a partial orderingtand with bounded in-degrde despite its super-exponential size, can be
performed with relatively small time and space restrictions.

There has been other work on making model averaging over BayesinrRestructures ef-
ficient: Methods for approximate MA classification using both selective ipgu(Madigan and
Raftery, 1994; Wolinsky, 1997) and Monte-Carlo techniques (Madeyaoh York, 1995) exist and
have been shown to improve performance in prediction tasks; howessr thethods are approxi-
mate, and do not have the complexity guarantees that our method pos$agsgman and Koller
(2003) studied the ability to estimate structural features of a network (Bonpbe the probability
of an arc fromX; to X;) by performing a MCMC search over orderings of nodes. Their method
relied on a decomposition, which they credit to Buntine (1991), that we @éxteorder to prove our
key theoretical result. We discuss this issue in detail in Section 3. Their aiffeks from ours in
two key respects: (1) Their approach does not capture the singleketand thus the efficiency
of calculation) approximation to the MA problem, and (2) They perform maslelaging only to
calculate the probabilities of structural features, explicitly not for predict@ther work has been
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done (Meila and Jaakkola, 2000; Cerquides and de Mantaras, 2603 rforming exact model
averaging for prediction over all tree-structuresi(N®) time. This research also uses similar as-
sumptions and similar decompositions used by Friedman and Koller (2003) &md paper. Our
calculation is more general in allowing nodes to have more than one pareittisdess general in
that it assumes a partial-ordering of the nodes.

The primary contributions in this paper are as follows: (1) we extend thendgasition of Bun-
tine (1991) to apply to the task of prediction, (2) we show that MA calculatomes this class can
be reproduced by a single network struct8revhich, if it can be constructed tractably, thereafter
allows approximate MA predictions to be performed using standard Bayesiarork inference,
(3) we show that, for the class of naive models, calculatioS ofincluding parameters) can be
performed in linear time in the number of variables, and we demonstrate empiticaiiynodel av-
eraging over naive classifiers improves performance, and (4) wéogevéechnigue to make model
averaging practical for arbitrary orderings, and we demonstrate ewpjirtbat this technique can
result in improved classification (compared to other Bayesian networkif@dasseven when no
ordering information is knowa priori.

Aside from the practical issue of achieving accurate predictions, obnigae is interesting
from an analytical perspective. As an example, recently, Domingo®j§268de an argument based
on empirical and theoretical grounds that Bayesian model averagingataally exacerbate the
over-fitting problem in machine learning. Empirically, he shows that rulezbrarthat approxi-
mate pure Bayesian model averaging closer and closer achieve suelgdsigher error rates than
arule-learner that uses the mathoctechnique of bagging. He explains this observation as a con-
sequence of the likelihood’s exponential sensitivity to random fluctuatiothe data, and surmises
that the effect will be significant even for small data sets and will be amplifsethe number of
models being averaged over increases. Our experiments here @eledt test of this assertion,
obtaining results that conflict with the conclusions of Domingos.

In Section 2 we formally frame the problem and state our assumptions and nptatit re-
derive previous results. In Section 3 we derive the MA solution and shatthe MA predictions
are approximated by those of a single structure bearing a particular getasheters. In Section 4
we present the experimental comparisons, and in Section 5 we discussnmlusions and future
directions.

2. Previous Results

In this section we frame the problem, introduce our notation and review rglpvavious research,
re-deriving the results of Friedman and Koller (2003) and Buntine (188 casting them into
notation that will allow us to extend them for prediction in Section 3.

2.1 Assumptions and Notation

The general supervised classification problem can be framed as folBiven a set of features
F={F,F,...,~}, a set of classes = {C1,Cy,...Cyn.}, and a labelled training data sbt=
{D1,Dy,...,Dny,} generated from some distributid® construct a model to predict into which
class future feature vectors sampled fréhare most likely to reside. We use the notatdXinto
refer to the nodes when we need to have a uniform notation; we use thentiomvthatX; = F and
Xo = C, and we use«X to denote the collective set of nodes in the network. A directed g&{ph
is defined as a pailX, E), whereE is a set of directed edge$ — Xj, such thaiX, X; € X. If X isa
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random variable, we I&®ng X) denote the range &f. We typically use boldface symbols to denote
sets and non-boldface type to denote elements of sets, when possible.

We are considering the problem of averaging over the spa@apésian networlstructures.
For a set of variableX, a Bayesian network oK is a graphical model which factorizes the joint
distributionP(X) overX. In particular:

Definition 1 (Bayesian network) Given a set X of N variables, a Bayesian network B on X is a
pair B= (S 0), where S= (X,E) is a directed acyclic graph over X, arftd= {60,61,...,6n} are

the parameters of the network that represent the set of conditionbhpitity distributions for each
variable in X given its parents in S.

We make the following assumptions:

Assumption 1 (Multinomial variables) Each node Xrepresents a discrete random variable with
ri possible states: Rifli) = {x!,x? ... X}

We usePg to denote the parent set ¥f, and we letg; denote the number of possible joint con-
figurations of parents for nod§ (defininggi=1 if P = 0), which we enumerate afkngPa) =
{pl,p%..., piqi}; for example, ifX; has 3 binary parents thep= 8.

Under the assumption of multinomial variables, a conditional probability distribu@idior
variable X; will take the form of a conditional probability table (CPT) with componeig =
P(X = X<| Pa = p!), and for a fixed network structur® the component§;jx form the parame-
ters of the Bayesian network model and define the joint distribution oveaalibles assuming the
Markov condition holds. We use the symifly| to denote the entire conditional probability distri-
bution function for the-th node and thg-th parent configuration, and the symifolo denote the
collective parameters of the network. In general we use the contijloncoordinates notation to
identify thek-th state and th@th parent configuration of theth node in the network. We use the
shorthand that ifQ;jx is some quantity associated with coordingigk), thenQ;; = 5y Qijk-

Assumption 2 (Complete labelled training data) The training data set D contains no recorg ®
D such that D has a non-observed component.

We will discuss ways to relax this assumption in Section 5. WH|etdenote the sufficient statistics
of the data set (i.e., the number of times that ngdachieved statk when parent sd®g was in the
j-th configuration).

Assumption 3 (Dirichlet priors) The prior beliefs over parameter values are given by a Dirichlet
distribution.

We letaij denote the Dirichlet hyperparameter corresponding to the network pemaliye. For
simplicity, we assumeijjx can be calculated i@(1) time and space; this is the case, for exam-
ple, with two popular metrics, the K2 metric (Cooper and Herskovits, 1992tz BDeu metric
(Heckerman, Geiger, and Chickering, 1995).

Assumption 4 (Parameter independence)or any given network structure S, each probability
distribution;; is independent of any other probability distributiépn; :

N G

P19 =[][1P0; 9. (1)
1=0 |=
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Finally, we take the assumption that the priors on paraméfgréor a nodeX; depend only on
the local structure. This assumption is knownpasameter modularit{Heckerman, Geiger, and
Chickering, 1995):

Definition 2 (Parameter modularity) Let X be a set of variables with X X. For any two network
structures $and S over X, if Pajs, = Pals, then RBjk | S1) = PBijk | &).

2.2 Averaging Over Parameters with a Fixed Network Structure

One common goal in machine learning with Bayesian networks is to calculateadhahility of a
configurationX = x of a set of variableX. This can be used for predicting likely configurations of
variables, or it can be queried for any conditional probability of intevest the variables iX (e.qg.,
P(X1,X2 | X3)) which could be useful for prediction. For a fixed network structiesd a fixed set
of network parameter, P(X = x | S,8) can be calculated i@®(N) time:

N
P(XZX\SG):I_!}GUK, (2

where all(j,k) coordinates are fixed by the configuration¥fo the valug(j, k) = (J,K).
When, rather than a fixed set of parameters, a databdsegiven, it is necessary to average
over all possible configurations of the paramefers

P(X=x|SD) — /P(X:X]SB)P(G\SD)UG

_ /ﬁeUK-P(msD)-de,

where the second line follows from Equation 2. Given the assumption ahpaer independence
and Dirichlet priors, this quantity can be written just in terms of sufficient sikedisnd Dirichlet
hyperparameters (Cooper and Herskovits, 1992; Heckerman, GaigeChickering, 1995):

Aigk + Nigk

N
PO =X| 8D) =[]0 i ®)

where we have used the notatian; = 3 aij<. Comparing this result to Equation 2 illustrates the
well-known result that a single network with a fixed set of parameigjisen by

(4)

will produce predictions equivalent to those obtained by averagingadiggrameter configurations.
We refer to Equation 4 as ttetandard parameterization

2.3 Averaging Structural Features with a Fixed Ordering

The decomposition by Buntine used by Friedman and Koller was a dynamiapnagng solution
which calculated, with relative efficiency, for example, the posterior goitiba P(X. — Xu | D)

1181



DAsSH AND COOPER

of a particular arc{, — Xy averaged over all in-degree-bounded networks consistent withdh fixe
ordering. Friedman and Koller then showed how this quantity could be usedi@MC search
for the most likely structural feature, where the search went overiogginstead of DAGs. One
might be interested in this quantity, for example, if you were interested in as&ayestimate for
the structural dependency relations of the system given the data; isdenen and Koller (2003)
for more motivation for why this quantity would be useful. In this section wdarve the result of
Buntine.

The derivation required the ability to calculate efficiently the prior probal#{tg) that a given
structureS generated the databaBe An additional assumption was introduced, labelgdicture
modularityby Friedman and Koller:

Assumption 5 (Structure modularity) The prior of a structure S, (), can be factored according
to the network

N
P(S O UJ ps(Xi, Pay), ()

where p(X;,Pa) is some function that depends only on the local structuye(d Pa).

Any metric that assesses the structure p(®) based on a difference in arcs betwetand some
prior network structur& (as suggested by Heckerman, Geiger, and Chickering (1995)) willysatis
this condition. Also the uniform distribution will obviously satisfy this assumptiamg requires
O(1) time to assess. Obviously, we restrict ourselves to structures treapgiability zero to a
non-acyclic DAG.

The posterior probabilit?(X_ — Xu | D) can be written as

PXL — Xu | D) =
CZBK(XLHXM €S)-PD[9-P(9, (6)

wherec = 1/P(D) is a constant that depends only on the database}a@ is the Kronecker delta

function:
1 if Z=true

0 otherwise.

% (2) = {

The summation in Equation 6 includes a super-exponential number of nestvadtures, and
therefore appears to be intractable. Buntine handled this problem by impositg ordering on
the nodes and restricting the maximum number of par&ntkat each node can have. Generalizing
his results to a partial orderinginstead of a total ordering is straightforward, and we do that here.
For a given partial orderingand a particular nods, it is required to enumerate all ¥f’s possible
parent sets up to a maximum sike To this end, we will typically use the superscripto index
the different parent sets. For example, four nodes partitioned-as{X;, X3}, {Xz,Xs}) and a
maximum in-degred = 2 would yield the following enumeration of parent sets ¥or {Pag =
0,Pab = {X1},Pa = {Xa},Pa} = {X1, Xa}}.

The class of models consistent wittwith bounded in-degree ¢&fwe denote a<

Definition 3 (L) For a given integer k< N and a given partial orderingt of X, a DAG G=
(X,E) € L iff arcs are directed from higher to lower levels and no variable has moaa th
parents: X— X; € E = 1(X) > 1(Xj), and X € X = |Pg| <k.
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Note that ifD;, D> € LT andD; # D thenDy is statistically distinguishable froi, because it will
include a different set of adjacencies (Verma and Pearl, 1991); sn aweraging over the clasg',
we are never averaging over equivalent DAGs.

The number of structures if is still exponentially large in the worst-case; each node at level
| can choose up tk parents from among all the nodes in levEls- |. Fork < N/2, £ in the
, N/2 ,
worst-case includes at lea@t (lez) 2| network structures. This result corresponds to the case
wherertconsists of two levels, each withh/2 nodes; each of thd /2 nodes in the bottom level can
therefore choose up t0'/?) possible parent’.

Given the assumptions of this papB(D | S), can be written just in terms of hyperparameters
and sufficient statistics (Cooper and Herskovits, 1992; Heckermagefand Chickering, 1995):

N (o) L r(O(|Jk+N|Jk)
PO19= I_LI_LF(GIJ_'_NU) b Tlogk) (7)

Given structure modularity (Assumption 5) and Equation 7, Equation 6 camitien as

P(xLame):cZﬂpﬁM. (8)

Thepg,, functions are given by

& (o)

pim = & [M #iVX_ € Pal- ps(X,Pa)- M I (aijk + Nijk)
=1

Qi +'Nu) r1 r(auk)

(9)

and can be calculated using information that depends only on nG@eslPa;.

Even restricting structures to those in a particulclass, as already mentioned, the summation
in Equation 8 still contains an exponential number of structures in the wasst-cHowever, the
following theorem (similar to one from Buntine (1991)) shows tR&X, — Xyv | D, L) can be
calculated with relative efficiency:

Theorem 1 Assuming & L[, equation 8 can be written agR. — Xum | D, L) =c o35 ool m>
wherep! ,, denotespy,, for the vth parent set Paof X and the summation goes over all parent
sets available to node; Xinder the restrictions of.

Proof: For notational simplicity, we will drop theM subscripts on the functions: p! = pjj -
Expanding the sum in Equation 8 yields

2. We are not asserting that this two-level ordering is the absolute wasst-only that the worst-case must have at least
this many network structures.
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PO — X | D, L0 | ot g0 0 Q1)

N2\ N2
< ) terms, worst-case.

+ pSpd-... Pk
+ p5pd-..pk

+ Py pd...ph

+ P PPN )

We define the symbd,,, to denote the structure sum of the product up to and includingntte
node:

Smo= Pg-PY-... P
+ 5Py P
+ Py Py P

Using this notation, the following recursion relation can be derived:
a \)
Zi=%4-yp, Z,=1
v=1
Finally, expanding the recurrence relation yields the expressidR(¥r— Xv | D, £):

N W
PG = Xu | D.£) =[] 5 . (10)
i=0v=1

Thus, a summation @ [(N(Z)N/z] terms can be performed @ [(E) : N] operations.

3. Model Averaging for Prediction

In this section we show how to extend the results of Section 2 to efficientlylatdciihe quantity
P(X =x| D, L) averaged over the clagg".

1184



MODEL AVERAGING WITH DISCRETEBNS

This quantity can be written as

POC-X1D.0) = 505 5 [P0 |9 RS, (11
SeLkl

wherebj;x are the standard parameters given in Equation 4. Given structure mitdatat Equa-
tion 7, Equation 11 can be written in a form very similar to Equation 8:

N
PX=x|D,L)=c Z rLfsiJfov (12)
SELfi=
where here th@;;s¢, functions are given by
il I (aij) r(auk4‘Nuk)
. Pa), 13
Piask, |JSKx I_L Mo + N”) F(i30) Ps(Xi, Pa) (13)

andc is a constant (not dependent Snequal to ¥P(D). We subscript the indicesandK from
Equation 2 with arx to indicate that they are fixed by a particular configuratioX cdindJ is indexed
by Sto emphasize that the value of the parent configuration index depends puartiber of parents
and therefore the structu®of the network. Although this notation may seem cumbersome, we
believe it clarifies the analysis later.

As in Section 2.3, the worst-case number of terms in the summation of EquatioexXibisen-
tial in the number of features. Thep;;s¢, functions again can be calculated using only information
local to nodeX; andPg. Following a derivation identical to that for averagiRgX. — Xu | D, L)
in Section 2.3, yields the following :

N W
PX=x|D, L) = CD) Zlf)x];Kx- (14)

Here theSindex has been replaced witlvandicating which parent set for nodg is being consid-
ered. The following theorem shows that this summation can be perforn@({'ﬁj ‘N-k-Np-R)
time andO(k - Np) space.

Theorem 2 For N variables with a maximum number of states per variable given by Raand
database of N records, Equation 14 can be calculated ir((Q) -N-k-Np - R) time and using
O(k- Np) space.

Proof: The right-hand-side of Equation 14 includéroducts anc('d) sums. Eaclp} ,, term can
be calculated irO(k- Np - R) time andO(k - Np) space. This result follows because all sufficient
statistics for a given nod¥ can be stored in a tree of depiitk) and widthO(Np), with the leaves
of the tree holding the sufficient statistic for the given configuratioX; @ndPa(X;). To fill the tree
requiresNp passes of the tree, thus taki@fk - Np) time. Once the tree is constructed, it can be
queried for any statistic i@(k) time.

The number of possible parent configurations present in the data anel by the number of
recordsNp; thus the number ofi, j) configurations for whichN;; # 0 is O(Np). Furthermore, all
terms in the product of Equation 14 for whidh; = 0 will equal 1 so will not contribute to the
product. Thus, the calculation of products in Equation 13 reddfke Np - R) time.

Putting all the steps together yields the claim of the theorem. O
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Although this result is relatively efficient, for classification purposes it stdlybe too complex
of a calculation. The functional form of the above solution allows us to gtbat exact model
averaging over, can actually be performed with a single Bayesian network structure:

Theorem 3 There exists a single Bayesian network modél-M(S*,0%) that will define a joint
distribution X = x | S$,0%) that is equivalent to that produced by model averaging over all
models in .

Proof: Let S* be defined so that each nodghas the parent s&g" = Ut'*’zl P&, and letd” be
defined by

Hi
eljk - Cl /N Z 6?{]}’k? (15)
v=1

where thex subscript forJy has now been replaced with jaand Ky has been replaced with a
k subscript, because we are considering a particular coordingte It can be seen by direct
comparison that substitutirﬁjjk into Equation 2 will yield Equation 14. O

If we define functiond (X, P&’ | D) such thaf (X;,Pa’ | D) = pIJvk/emk, then Equation 15 can
be written as

Ijk - Cl /N Z e|.J"k (X, pa1V ‘ D). (16)

The functiond (X;, Pa’ | D) do not depend on the indicé§ andk, and they can be interpreted as
the local posterior probability that the parent seKpfs in factPa’. Equation 16 thus provides the
interpretation thaM* represents a structure-based smoothing where each standard paémwete
is weighted based on the likelihood tiRd is the parent set of. Since6j; is interpretable as a

probability, the constart!/N serves as a normalization constant and need not be calculated directly.
There are some numerical complexities with calculating the parameters usiatidegl. One
must essentially calculate quantities of the form

6 =c/NS &Y - explfy, (17)
\Y

wherel f = log f” is a negative number with large absolute value. Exponentiating this value will
usually be truncated to zero using floating-point arithmetic. In reality howéve normalization
constantc/N is also very small and in fact mak@ nonzero in many cases. To get around this
problem, we use a known trick of shifting the exponentials so the largesiderqual to 1. The net
result of this is to change the normalization constant, which is never calcetgpditly, i.e.

1/N fa\y v Cl/N v v
ct/ zei -explf! = mze cexp(IfY —If 10, (18)
Theorem 3 implies that, rather than performing (D(E{'l\(') -N) summation in Equation 14 for
each case to be classified, in principle we need only construct a singld Mé@dad use standard
Bayesian network inference for each case. In the case of a complettdytiated feature vector,
this inference can be completed@{N) time; otherwise BN inference can be used. Unfortunately
for almost all realistic partial orderindd* will be a highly dense network and memory requirements
will be prohibitive. Furthermore, the network structi®ewould be non-interpretable by a human.
The intractability ofM* is a central problem with applying this method in practice, and we devote
most of the remainder of this paper to presenting ways to remedy this problem.
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3.1 Model Averaging over Naive structures

One popular class of models that fits into thschema is the class of naive (simple) Bayes models.
The naive classifier is a probabilistic model that accomplishes classificationkiygtibe assump-

tion that any featur€&; € F is conditionally independent of any other featéfec F given the value

of the class variabl€. The naive model can be represented by the Bayesian network shown in
Figure 1.

F, F, Fy ... Fy
Figure 1: A naive networkC is the class node which can take on one value for each possible class,
and the denote features of interest.

Naive classifiers have several desirable features: First, they are songestruct, requiring
very little domain background knowledge, as opposed to general Bayestavorks which can
require numerous intensive sessions with experts, or a large real-datdthase to learn the de-
pendence structure between features. Second, naive networke talittwith very constrained
space and time complexity: constructing a network requires the estimation bdhGEN - R- Nc)
parameters, wherR is the maximum number of feature states &fads the number of class states.
Each of which can be estimated from data in ti@®@), whereNp is the number of records in the
database. Inference with naive networks is also efficient; classificatiamew feature vectdf’
can be performed in tim@(|F’|), even ifF’ is an incomplete instantiation of features.

Despite their simplicity, these classifiers have been shown to perfornmsogly well in prac-
tice. Domingos and Pazzani (1997) have shown that naive classifietsecaptimal (in terms of
classifcation accuracy) even when the underlying distribution doesatisfysthe naive assump-
tions. Friedman (1997) argues that the low variance of the naive clagsifiemitigate the bias,
resulting in overall accurate predictions. Finally, Ng and Jordan (2610&) both theoretically and
empirically that the naive classifier converges quickly to its asymptotic ewel-l&hese studies
explain why the naive model has continued to compare favorably to stdte-@irt classification
algorithms.

The construction of a naive classifier given afseif potential attributes requires only two gen-
eral steps: (1) Select the subset of featl¥es F judged to be relevant to classification, and (2)
Calculate the sd of parameters using Equation 4. The feature selection problem (1) iscuHiffi
and central problem in machine learning in general. In terms of naive aassile selection of
the appropriate subs&t has been shown to be both important to classification and non-trivial to
perform in practice (Langley and Sage, 1994; Kohavi and Johr¥;1&¢dman, Geiger, and Gold-
szmidt, 1997). Obviously eliminating features that do not bear on the clasg&ifigs important, but
also important is the ability to minimize redundant features.

Our method allows us to take a strict Bayesian approach to feature seleattwer; than finding
a single “good” seF’, we can efficiently address the problem of model averaging predictiars o
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all 2N possible feature-set structures. An enumeration of these differetustes is illustrated in
Figure 2.

F. F R F F. F R Py Fr R Ry Fu
C C
T, °

OO0~ OO0O0-0

Fy F, Fp o K Fy F, Fs . R

Figure 2: Enumerating all thé'2possible naive Bayes net structures.

The summary moda¥1*, defined in Theorem 3, for the naive class is especially simple, itself
being a naive network oveitl features. Equation 16 for a naive Bayes net reduces to

i O 80 - fi(0| D) + 85, - fi({C} | D), (19)

where fi(0 | D) and f;({C} | D) are proportional to the local posterior probability & = 0 and

Pa = {C}, respectively. The sufficient statistics and Dirichlet priors requiredHis calculation

are the same as those needed for calculating the parameters of (a) a simgiekrwith no arcs
present, and (b) a single naive network with all arcs present. Thisarapaerization requires order
O(N - Np) time and space requirements, which are the same that are needed to ctieldtdaedard
parameters of a single naive network oveNafkatures. We call a naive structure so parameterized
aNaive model averaginNMA) classifier. In Section 4 we present empirical results showing that
this reparameterization, over a wide range of experimental parametersstaiways produced
better classification results than a standard naive model.

3.2 Approximate Model Averaging

As noted in Section 3, a serious practical difficulty with constructigaccording to Theorem 3
when no ordering is known, is that it requires in the worst case the cmtisin of a completely-
connected Bayesian network and inference can thus be intractabledat amallN. An obvious
pruning strategy, however, is to truncate the sum in Equation 15 to includemmtham parents.
Here we present one possible method for selecting thest important parents for each node.

If we reorder the possible parent sets for n¥dasOp = {Pa!, ..., Pq”} suchthat (X;,Pa’ | D) >
f(Xi,Pa{‘ | D) if and only ifv < A, then an approximation fd?a’ can be constructed by the following
procedure:

Procedure 1 (Approximate P construction)
Given: nandOp.

1. LetPg =0
2. Forv=1tou,
if |Pa; UPa’| <n, let Pg = Pg" UP&’, else continue.
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We denote the class of structures being averaged over using this pre@si,] (D), and we call
the methodApproximate Model AveragingAMA). Obviously £7(D) = L. Furthermore, we
empirically show in Section 4 that the loss in ROC argajue to this approximation far > 10
lies around—0.6% < € < 0.6% with 99% confidence foN < 100 and for a wide range of other
parameters. We also show empirically that classifications are not typicabjtisero the value of
n, so oftenn can be made relatively small without degrading classification results.

4. Experimental Tests

In this section we describe several experimental investigations that wsigned to test the perfor-
mance of NMA and AMA on arbitrary distributions. We first generate syiith#ata to allow us

to more extensively vary parameters, then we perform tests on sevekaborld machine learning
data sets. All experiments were implemented in C++ using code that was batieelQiructural
Modelling, Inference and Learning Engif€MILE) (Druzdzel, 1999), a library for constructing
probabilistic decision support modelsExperiments were run on an 1.6 GHz Pentium PC with 1
GB of RAM running Windows XP.

4.1 Experimental Setup

There are at least five parameters for which we sought to charadtesiperformance of classifier
predictions: the number of nodBis the approximation limit on the size of the maximum in-degree
in the summary network, the maximum in-degree (“densitg"pdf the generatingnetwork, the
maximum in-degre& (k < n) allowed in models in 7, and the number of recordé. It is beyond
the scope of this paper to present a comprehensive comparison oval tive-dimensional space;
however, here we sample their settings to provide insight into the dependetie results on these
parameters.

In our experiments, four classifiers were compared: AMA using a fixatigd ordering, a
NMA classifier, a single naive network (SNN) with the standard parametierizgdomingos and
Pazzani, 1997), and a non-restricted two-stage greedy thick-thin)(@ibdlel selection over the
space of DAGs, which is described below.

The algorithm used to generate the GTT model, which assumes no ordering nades, is as
follows:

Procedure 2 (Greedy thick-thin search)
Given: a networkSwith no arcs.
Do:

1. Repeatedly add the arc whose addition maximally increases the maligaigdood RD | S)
without creating a cycle until no increase is possible.

2. Repeatedly delete the arc whose deletion maximally increg@&$ 3 until no increase is
possible.

The inner-loop of each test performed the same procedure: Giveix trerametergN, Np, Nest, K, n,k},
we did the following:

3. SMILE can be downloaded from http://www.sis.pitt.edu/"genie; howthelearning functionality required for our
experiments is not yet available for public release.
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Procedure 3 (Basic testing loop)
Given: N, Np, Neest, K, n, k.
Do:

1. Generate a random Bayesian network-Es(N, K).
2. Sample N training records and N test records from the distribution defined by B.

3. Train two classifiers to be compared; Mypically the AMA classifier) and pMthe classifier
to be compared), on the training records.

4. Test M and M on the test data, measuring the ROC area@Rd R, respectively, of each.

5. Calculate the quantity = §=2%.

The ROC Areaof a classifier (cf., Egan, 1975), is the area of the curve showing tkeepiwsitives
of the classifier versus the false-positives as the sensitivity of the ctadsiwept out from 0O to
1. It has been used with increasing frequency in machine learning $e@aurovides an objective
evaluation of a classifier without requiring the specification of a particuiéityufunction (e.g.
zero-one loss).

The performance metrid indicates what percentage bf,’'s missing ROC area (£ Ry) is
covered byM;: If My is perfect therd will be 1. if M is eauivalent tdvl> thend will be 0. and if
M, is worse tharM, thel A

1

0 >
0 1

Figure 3: The performance metrdcused in our experiments measures the fraction of ROC area
captured by our classifier (with ROC arBa) versus some other classifier (with ROC
areaR,).

parameters, this procedure was repediggs times and was averaged over these trials.

For some experiments it was necessary to generate networks randombmpleyed a lazy
data generation procedure whereby node conditional probability distritsuwvere generated only
when they were required by the sampling, a technique which allows gemes@tiata for arbitrarily
dense networks. The algorithm for selecting network structures abnaiglas follows:

Procedure 4 (random structure generation)
Given: a set of node¥; number of recordd\p; and maximum in-degre.
Do:
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1. Construct a total ordering (@) over the variables.
2. For each node\o:

(a) Choose a number of parents,, mniformly at random fron{1,...,K}.

(b) Select, uniformly at randormin(np,o(V;)) parents P such that(®) < o(V}).

The choice of the proper set of noninformative structure priors istrigial, and in these ex-
periments we do not attempt to address the subtle complexities inherent in ésqrtn all cases
we assume a uniform prior over non-forbidden structures and thus aljoxy, Ps;) = 1/ for all
i. These priors will put overwhelming mass on networks with a “medium" numbaras be-
cause there exist many more of these DAGs. We also adopted the K2 parpnuatevhich sets
aijk = 1 for all (i, j, k). This criterion has the property of weighting all local distributions of param-
eters uniformly, and has been shown empirically to be an effective nomiative prior (Cooper
and Herskovits, 1992; Heckerman et al., 1995). All variables in outhgyic tests were binary,
Ne; = R= 2, andN,es; = 1000, and we typically chose an exponentially increasing sequencé of va
ues forN to test the benefits of the algorithms on a wide-range of scenarios. In rRpayiraents
we sampled the in-degree of generating graghmiformly from the set{1,2,...,N}; we use the
notationK < {1,...,N} to denote this procedure.

In all experimentsjt for AMA was chosen to be a fixed total ordering of the variables. At
least three heuristics were used to generatél) generate a random ordering, (2) generate two
opposite random orderings and average predictions of each, and€3 topological sort of the
graph obtained by GTT. In preliminary experiments, these methods prodocegarable results,
but (2) and (3) performed a few percent better. In all results pteddrelow, method (3) was used
to generatet

All abbreviations and symbols are summarized in Table 1 as a refereniteficrader.

Symbol| Description
N Number of nodes
Np Number of training records
Niest | Number of testing records
Nirials | Number of times Procedure 3 was repeated

K Maximum in-degree of generating graphs
k Maximum in-degree in.;
n Maximum in-degree in summary MA network (Section 3}2)

SNN | Single naive network (with feature selection)
NMA | Naive model averaging

GTT | Greedy thick-thin

AMA | Approximate model averaging

Table 1: Table of symbols relevant to experiments.

1191



DAsSH AND COOPER

4.2 Experimental Results

In this section we present a range of experimental tests we performegl degim generated from
random graphs, data generated from the standard benchmark AL&RMNbrk, and data from real-
world data sets from the UCI database.

4.2.1 MAIVE MODEL AVERAGING VERSUS ASINGLE NAIVE NETWORK

It has been shown (Domingos and Pazzani, 1997) that the naive clasgliiéhe standard parame-
terization can be optimal under zero-one loss even when the underlyiegendence assumptions
are incorrect. That, together with the fact that calculating parametersisomitdel can be done
with a single pass through the data, make it a useful and widely used modtdsification, and it
would be interesting if we find a model that has the same ease of calculatiperfoitmed signif-
icantly better. There are, of course, many other classifiers that we comigare to, in particular,
optimizing the conditional likelihood under the naive network assumptionsspmnels to a logistic
regression model which has also shown to do well for classification. \fée demparisons of our
method to logistic regression and other models for future work.

As Section 3.1 shows, using NMA it is possible to model average over dlirfesasets for a naive
model simply by reparametrizing a single naive network according to EquéaioBelcause of the
simplicity of this technique (an existing naive classifier could trivially be replagih a model-
averaging version just by a change in parameters), we performedeamsi&e set of comparisons
of NMA versus a SNN using synthetic data generated from randomlytrtmtesd (not necessarily
naive ) Bayesian networks.

Feature selection for the SNN was performed by successively addiraydhtbat maximized
the posterior probability of the network structuBeauntil no arc resulted in an increase. Although
this is a greedy strategy, for SNN under the assumptions taken in this fapsults in a structure
that globally maximizes the posterior probability given the data. This can betssause, given
structure modularity, the marginal likelihood for a given arc is independeall other arcs in the
network.

We tested the relative performance of SNN versus a single naive modiL($hverall fea-
tures (i.e., without any feature selection) by performing Procedure 3Nwidried over the sef10,
20, 40, 80, 100, 329 with Np varied over the sef100, 200, 400, 800, 1600, 3200, 640énd with
K < [1,...,N]. We found that for all configurations of experimental parameters, Stthiated
SNNy, with averaged = 29%+ 1%. Because of this, we do not include SNNn any of our
comparisons to AMA, NMA or GTT.

In the evaluation of NMA performance over SNN performance, we simuliasig variedN
from the set{10, 20, 40, 80, 16p Np from the set{50, 100, 200, 400, 800, 1600, 3200, 6400
andK from the set{5, 10,20, 4080, 160G (obviously howeveK < N). We used\as = 1000
in order to establish clear statistical significance. The results are shovabla Z. The remaining
area covered by NMA ranged from a fraction of one percent to 1T#inkall save one of the 160
configurations measured, the improvement of NMA was significant at tBe189el, the general
trend being that NMA performed better for smaller valuesNoand Np. The lower and upper
quartiles (i.e., the 25% and 75% quantiles: the valugstb&t confine the middle 50% of the values
of & that we observed in our tests) show the true spread of the data, i.e.sbefdhe large number
of trials, the confidence intervals in the mean are not indicative of the widtih® alistributions.
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4.2.2 MODEL AVERAGING OVER L (D) VERSUS L]

Since, as we have already mentioned, averaging over the full Glasjuires considerable calcula-
tion using Equation 14, we must resort in general to using the single summiavgnk and instead
only averaging over the clasg] (D). We were interested in testing what price we pay in terms of
classification for reducing the size of the space of models. The first egperiments we performed
tested the degree of error incurred by model averaging 6JgD) instead of the full clas.

Np — 50 100 200 400
N K 3 (%) Q Qu (%) Q Qu 5 (%) Q Qu 5 (%) Q Qu
10 5| 17.2+16 84 | 240 | 170+14 95 | 228 | 165+14 87 | 217 | 140+12 7.3 19.4
10 10 | 171+16 77 | 236 | 169+14 92 | 239 | 162+14 79 | 235 | 155+13 78 | 212
20 5 8.7+11 31 121 87+1.0 3.7 122 84409 4.1 113 9.0+1.0 39 133
20 10 81+10 3.2 124 | 100+1.3 35 135 9.6+1.0 4.7 125 89+1.1 33 119
20 20 85+1.0 3.7 119 96+1.1 3.8 139 | 101+1.1 4.4 | 137 98+11 4.2 134
40 5 3.84+0.8 0.3 7.3 35+0.6 0.8 6.2 45406 1.7 6.9 4.64+0.6 1.5 57
40 10 3.0+0.6 0.2 55 42406 1.3 6.6 3.84+0.6 0.8 57 4.64+0.7 1.5 6.2
40 20 3.0+0.6 0.2 4.8 46407 15 6.9 44409 1.1 6.7 6.14+1.0 2.1 79
40 40 22405 | -0.2 4.2 35407 0.6 57 4.64+0.7 1.4 6.8 594+0.8 2.0 8.1
80 5 2.8+0.7 —-0.4 4.9 27+06 | —-0.2 5.0 2.4+0.5 0.1 4.3 2.1+04 0.3 3.8
80 10 1.6+05 | -0.6 2.9 1.5+05 | -0.8 3.7 2.1+04 0.0 3.7 2.6+04 0.6 4.4
80 20 1.2+05 | -0.7 2.6 1.3+05 | -0.7 2.9 19+04 | -0.1 3.6 2.4+0.5 0.2 4.0
80 40 0.7+£05 | —-11 2.1 1.0+04 | -1.1 2.8 1.44+05 | -05 3.1 2.3+0.5 0.1 3.9
80 80 0.7+0.5 -1.0 1.9 1.0+04 -0.8 2.6 1.8+04 -0.1 31 2.44+0.5 0.1 4.4
160 5 20+06 | —09 3.6 22406 | -09 45 22405 | -0.1 4.1 1.6+04 | -03 3.2
160 10 1.24+05 | —-1.0 2.8 1.8+05 | -05 3.8 1.6+04 | —-06 3.8 1.2+04 | -06 29
160 20 1.14+05 | -05 2.2 09+04 | -1.0 2.6 1.0+04 | -07 29 09+04 | —-1.0 2.6
160 40 06+04 | —-1.0 1.7 05+04 | -1.3 2.0 05+04 | —-1.0 1.9 08+04 | —-11 2.4
160 80 06+04 | —-1.1 1.6 05+04 | —-1.3 2.0 05+03 | —-1.2 1.9 07+04 | —-11 2.4
160 | 160 01+03 | —-14 1.5 07+04 | 1.1 2.0 07+03 | —-09 2.3 05+04 | —-1.2 2.1

Np — 800 1600 3200 6400
N K 3 (%) Q Qu 3 (%) Q Qu 3 (%) Q Qu 3 (%) Q Qu
10 5| 138+13 6.7 | 192 | 115+10 52 | 158 | 115+12 43 | 171 | 100+13 29 | 145
10 10 | 123+£1.2 55| 181 | 105+1.2 39 | 143 84+1.1 29 | 113 84+1.1 24 | 119
20 5 7.7+0.9 26 | 117 7.7+1.0 1.8 | 118 59409 1.2 8.2 57+1.0 0.9 7.8
20 10 82+10 28 | 126 6.04+0.9 1.6 85 3.44+0.7 0.7 4.0 3.1+0.6 0.4 3.7
20 20 87+1.1 28 | 126 744+1.0 20 | 112 584+0.9 1.1 75 50409 0.6 6.7
40 5 46+0.7 13 6.3 3.1+06 0.7 39 3.7+0.7 0.5 4.3 3.4+0.8 0.2 3.6
40 10 48+0.7 16 6.5 3.5+0.6 1.0 4.4 3.1+07 0.5 3.3 2.3+0.6 0.2 2.2
40 20 6.0+0.8 18 8.2 6.1+0.9 1.6 8.8 54+09 0.8 8.0 5.0+1.0 0.5 7.7
40 40 75+1.0 2.7 | 10.0 6.6+1.0 1.7 | 100 7.3+1.0 1.1 | 110 59+1.0 0.6 9.6
80 5 2.3+0.4 0.5 3.4 2.0+0.5 0.3 2.7 2.24+0.5 0.2 2.7 1.8+£05 0.1 1.8
80 10 2.3+0.4 0.6 3.6 2.3+0.4 0.5 3.2 1.9+04 0.4 2.4 1.3+£0.3 0.1 1.4
80 20 2.7+05 0.7 4.5 3.0+0.5 0.8 4.4 3.94+0.6 0.8 51 3.6+0.6 0.6 51
80 40 29+0.5 0.6 4.4 3.9+0.6 0.9 5.6 54+0.8 13 8.0 52+0.7 1.0 7.6
80 80 3.3+0.5 0.9 5.3 40+0.6 1.0 6.3 49+0.8 1.0 7.5 52407 0.7 7.9
160 5 1.3+04 | -0.1 2.8 0.8+03 | —0.5 1.9 09+03 | —-0.1 1.4 09+0.3 0.0 1.2
160 10 1.2+0.3 | —0.6 2.7 1.2+0.3 0.0 2.6 08+03 | —0.2 1.7 09+02 | —-0.1 1.3
160 20 1.2+04 | —-0.7 3.0 124+03 | -04 2.6 1.7+0.4 0.1 2.4 21+04 0.1 3.3
160 40 1.1+03 | —0.6 2.7 16+04 | —04 2.8 2.6+0.5 0.3 3.9 2.6+0.5 0.3 3.9
160 80 0.7+04 | —-1.2 2.3 16+04 | —04 3.2 22+05 | -0.2 4.0 3.0+0.5 0.5 4.7
160 | 160 1.0+04 | —-0.8 2.5 1.7+04 0.0 31 2.6+0.5 04 4.0 3.44+05 0.6 55

Table 2: Exploration of NMA performance versus SNN performancB®sN andK are varied.
The error ranges are 99% confidence intervals in the m@aandQ, denote the lower and upper
quartiles, respectively.
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These experiments tested the sensitivity on the approximation parameterthe number of
nodesN. SettingNp = 100, Nyriais = 40, varyingN over the valueg20,40,80,160}, varyingn
over the valueg1,5,7,10,12,14}, varyingk over the valueq41,2,3,4}, andK «— [1,...,N]. The
compiled results are shown in Table 3. The ranges denote the 99% caefidézrval of the mean.
Table 3 shows that for a wide range of sensible values for these thramgi@rs, we pay little

| Nlk[ n| 3() |
2001| 7| -0.1+04
40 11| 7 0.0+0.5
80|1| 7 1+1
160 (1| 7 —2+£2
4011 | 1 2+2
401 5 0.3£0.8
40| 1| 7 0.0£0.5
4011 |10| 0.1+£0.6
40|11 |12 | -0.1£04
40| 1| 14| —-0.5£0.3
2001| 7| -01+04
2012 7 0.2+0.9
201 3| 7 1+1
204 7 0+1

Table 3: The values d¥ between model averaging ovef' and model averaging ovet (D) as
various parameters are varied.

classification cost by averaging ovgf (D) versusL;'. Especially interesting is that the difference is
small even for quite small values of the approximation levetven forn 2 5 the percent remaining
area captured by averaging over the full class is less tHa&# {i.e., 03%+ 0.80%) with probability

P > 0.99. Also, one might expect the approximation error to increagenss increased, since for a
fixedn, £'includes increasingly more structures thgf(D) askincreases. Table 3 shows that over
the range ok considered, there is not much sensitivity in the results tdhese results, although
not comprehensive in scope, support that averaging oJ¢D) does not severely degrade the ROC
area relative to model averaging ovgf. This result is important because only ovgf (D) can we
select a single tractable model to do model averaging via standard Bapesiark inference.

4.2.3 AMA VERSUSGTT, NMA AND SNN

In terms of classification accuracy, a more practical test of the benefiéf is to contrast its
performance directly with other algorithms. In our first set of measurenteriest this, we gen-
erated synthetic data and measured the performance of AMA relative tpNBIA and SNN. We
varied N over the set{20,40} (much higher was too time-consuming for the complete range of
k andn below), and simultaneously variedb from {100,1000}, k from 2-5,n from 4-14 and
K« {1,...,N}. In these experimentdiqs varied from 50 to~ 100, depending on the speed
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at which the AMA model could be learned. The resultsNbe 20 and 40 are shown in Table 4
and 5, respectively. In these and all subsequent tables (except ek@icitly stated), the error
ranges represent 99% confidence intervals, @hdnd Q, denote the lower and upper quartiles,
respectively.

These results illustrate several points. First is that AMA performancdatvealy insensitive
to the value ofn. This is an encouraging result, because an approximation network witigea lar
maximum in-degree can result in slow inference when the feature vecterdassified is not com-
plete andN is large. Next we note the evident complementarity between the naive clas@ifien
NMA and SNN) versus GTT. The naive classifiers perform consistesthigbat lowNp; whereas
GTT does better at high valuesf. This effect may be due to the difficulty of reliably extracting
structural information from very small databases; in which case GTT ialvietto generalize well.

A final observation about these tables is that for High GTT can achieve statistically significant
and large gains compared to AMA whems sufficiently small. This effect is more important/ds
increases because it becomes more difficult to average/gyep) for a fixedk asN is increased.
For example, in our experiments it was too computationally costly for us to tegigapply AMA
enough to get statistically significant measurementsNoe(40, k = 5). A similar but weaker ef-
fect is seen for the naive classifiers. Mgets large the benefits of AMA appear to lose statistical
significance at lowNp; however rarely did the naive classifiers outperform AMA in a statistically
significant sense.

Figure 4 summarizes the results of Tables 4-5 by showing the qualitativenganéf each
algorithm as various parameters are varied. These rankings wevedlbyi examining the results
in Tables 4-5 and for each classif@re {NMA, GTT, SNN }, calculatingd; which is the average
over all values oh for the particular configuration being considered in Figure 4. The follgwin
rules were applied to determine the rankings:

1. If AMA scored significantly better tha@; for a majority of runs, then AMA is ranked higher
thanGC;, and visa-versa.

2. If 5. < g, thenG; is ranked abov€;.

It is clear from this figure that the quality of AMA classifications dependsngflty on bothk and
Np.

While synthetic experiments are attractive because they allow us to systemaicgllyaram-
eters and generate enough samples to achieve statistical significanagg thelynecessary reflect
performance in the real world. Also, our synthetic data generation gga@ssumed no hidden vari-
ables, a fact which might bias our results. To this end we tested the fosifileson 34 data sets
taken from the UCI online database (Blake and Merz, 1998). Theskgese shown in Table 6.

Here the scoré{]I for classifierC; was calculated according to Procedure 3, whése= C; and
M1 was taken to be the maximum scoring classifier for the datd. dedr example, in the monks-2
database, AMA was the highest scoring classifier and covered 48% oéitiaining area for SNN
and GTT and 21% of the remaining area for NMA. The ROC area will in gérepend on which
state of the classification variable is considered to be the “positive" statescidnes in Table 6 are
average scores for all ROC curves associated with a particular classifigariable; therefore some
data sets (e.g., wine) have no zero entries when two or more classifieeshsgbest on different
curves.
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Configuration vs. NMA vs. GTT vs. SNN

Np | k n 5(%) | Q | Qu 3 (%) Q | Qu 3(%) | Q | Qu
100 2| 4 3+3 | -4 7 9+3 0| 18 || 13+3 5| 19
100 | 2 6 6+3 | -2 | 10 9+4 2| 16 || 16+4 5| 26
100 | 2 8 5+3 | -2 8 8+3 2| 16 || 14+3 5| 20
100 | 2 | 10 7+3 | -1 | 13 10+3 2| 18 || 15+4 | 4| 24
100 | 2 | 12 5+2 | -2 9 11+3 4| 18 || 13+3 6 | 20
100 | 2 | 14 7£3 | -1 9 11+4 4 | 18 || 16+3 6| 24
100| 3| 4 4+4 | -4 | 10 8+3 2| 12 || 13+4 2| 21
100 | 3 6 6+4 | -2 | 13 12+3 4 | 17 || 14+4 6 | 23
100 | 3 8 9+4 | -2 | 16 13+3 51| 18 || 19+4 7| 27
100 | 3 | 10 8+4 | -2 | 17 11+3 3| 16 || 17+4 6| 24
100 | 3 | 12 7+3 | -1 9 10+2 3| 14 || 17+3 6| 28
100 | 3 | 14 6+4 | -3 | 12 12+3 5| 18 || 15+4 3| 22
100 | 4| 4 5+4 | 4| 14 8+3 2| 12 || 15+4 | 4 | 22
100 | 4| 6 5+3 | -2 | 12 9+2 3| 15| 15+3 6 | 24
100 | 4| 8 5+4 | -2 | 11 10+3 3| 14 || 13+4 3| 23
100 | 4 | 10 7+3 | -2 | 13 12+3 3| 17 || 16+3 6 | 23
100 | 4 | 12 4+3 | -3 8 9+2 3| 14 || 13+3 4| 21
100 | 4 | 14 8+4 | -1 | 15 12+3 4 | 18 || 17+3 8 | 27
100 | 5 6 7+4 | -3 | 16 10+3 3| 13 || 15+4 | 4| 23
100 | 5 8 5+3 | -3 | 10 10+2 5| 13 || 13+3 3| 21
100 | 5| 10 4+4 | -2 | 11 9+3 3| 14| 12+4 | 4| 20
100 | 5 | 12 6+3 | -2 | 10 12+3 4| 17 || 16+3 7| 24
100 | 5| 14 6+3 | -2 9 10+2 4| 15 || 15+3 6 | 19
1000 | 2 | 4 || 10+4 | -2 | 18 —8+5 | -21 | 10 || 17+3 6 | 26
1000 | 2 6 || 11+3 1| 19| —-12+7 | -26 | 11 | 1943 | 11 | 27
1000 | 2 8 || 10+3 1| 17 || —15+7 | -33 7 || 17+3 7| 24
1000 | 2 | 10 || 12+4 2| 23 —8+8 | -17 | 13 || 20+4 | 13 | 30
1000 | 2 | 12 || 10+3 2| 18 || —10+7 | -23 | 10 || 16+3 9| 23
1000 | 2 | 14 || 10+3 2| 18 —7+5 | -21| 10 || 18+3 | 11 | 23
1000 | 3| 4 || 14+4 2| 23 1+4 | -8 91| 23+4 | 11 | 34
1000 | 3 6 || 15+4 2| 26 —2+5 | -7 9| 21+3 | 11| 31
1000 | 3 8 || 20+4 6| 31 2+4 | -6 | 14 || 27+4 | 16 | 35
1000 | 3 | 10 || 15+3 3| 23 0+5| -9 | 13| 21+3 | 13| 28
1000 | 3 | 12 || 18+4 51| 29 4+4 | -3 | 14 || 24+4 | 13| 33
1000 | 3| 14 || 18+4 | 4 | 28 1+4 | -3 | 12| 24+3 | 13| 33
1000 | 4 | 4 || 23+5 5| 37 6+3 1| 12| 294+4 | 15| 42
1000 | 4 | 6 || 20+5 2| 34 8+3 2| 13 || 29+4 | 14 | 41
1000 | 4 | 8 || 24+5 5| 40 8+3 2| 12 || 31+4 | 15| 45
1000 | 4 | 10 || 21+4 8| 32 6+3 1| 15| 284+3 | 18 | 37
1000 | 4 | 12 || 20+4 8| 32 7+2 1| 14 | 27+3 | 18 | 37
1000 | 4 | 14 || 25+4 7| 37 8+3 1| 14| 31+4 | 17 | 45
1000 | 5 6 || 23+4 6| 38 9+3 3| 15| 28+4 | 16 | 39
1000 | 5 8 || 23+5 6 | 37 10+3 3| 14 || 29+4 | 15| 42
1000 | 5 | 10 || 26+5 9| 40 9+2 3| 12 || 32+4 | 18 | 45
1000 | 5| 12 || 25+4 | 12| 38 10+3 2| 16 || 31+4 | 20 | 42
1000 | 5 | 14 || 23+4 8| 38 9+3 2| 16 || 28+4 | 15| 42

Table 4: Exploration of AMA performance fdd = 20 asNp, k andn are varied. Error ranges
denote the 99% confidence interva;andQ, denote the lower and upper quatrtiles, respectively.
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Configuration vs. NMA vs. GTT vs. SNN
No [K] n][38(%) [Q[Q| 8% [Q[Q| 8% [Q[Qu
100| 2| 4 1+3| 5| 5 6+4 | -1| 9 543 | -2 9
100 2| 6 3+3| -2| 8 5+4 | -2| 13 6+4| 0| 13
100| 2| 8 3+4 | -5| 10 74| -1| 10 6+4 | -2 | 15
100 | 2 | 10 3£t5| 4| 4 7+4 110 8+5| 1| 11
100 3| 4 1+5| -7| 4 6+3 0| 6 545| 4| 8
100| 3| 6 1+4| 5| 5 543 2| 9 544 | -3 | 10
100| 3| 8 1+4| 6| 4 4+3| 1| 9 4+4 | -3| 9
100| 3| 10 3+4| 4| 7 8+3 1|15 6+4| 1| 9
100 4| 4| -5+£5 -10| 1 2+4| -3| 8| -1+£5| -7| 5
100 4| 6 0+5| -7| 7 4+4 | -1| 6 3+5| -3| 6
100| 4| 8 0+3| 6| 5 5+3 0 11 544 | -1| 9
100 | 4 | 10 2+5| 4| 3 442 0| 7 6+5| -2 | 10
1000 2| 4 7+4 0|12} -10+8|-21| 6| 11+4| 3| 16
1000| 2| 6 8+4 | -1 12 —8+9|-22| 7| 144+4| 5| 19
1000 2| 8| 1145 1] 19| —-10+11|-38| 13| 17+5| 8| 27
1000| 2 | 10 544 | -2| 11| —-15+14|-29| 8| 11+5| 3| 20
1000| 3| 4| 14+5 2| 26 —-3+6| 9| 7| 1945, 6| 29
1000| 3| 6| 19+6 6| 30 0+t5, -6| 7| 23+6| 11| 32
1000| 3| 8| 18+5 7|27 3+t6 | -4| 14| 23+4 | 12| 31
1000| 3| 10 || 12+5 1|18 O+7, -1| 11| 18+4 | 8| 25
1000 4| 4| 19+6 2| 29 10+4 2| 17| 254+5| 12| 35
1000| 4| 6| 20+5 6| 33 6+4| -1| 11| 25+£5| 18| 35
1000| 4| 8| 18+6 1|28 9+4 3| 12| 23+5| 9| 29
1000| 4 | 10 || 22+6 1] 37 8+4 1] 12| 28+5| 13| 42

Table 5: Exploration of AMA performance over parameter spacélfer40.

k=2 k=3 k=4
. A A
GTT AMA
AMA NMA AMANMA | AMAGTT AMA NMA

N=40 GTT SNN AMA N=40 GTT NMA N=40 SNN GTT
NMA SNN SNN GTT NMA

SNN SNN

AMA GTT AMA AMA AMA

N=20 NMA AMA N=20 NMA AMA GTT N=20 NMA GTT
GTT NMA GTT NMA GTT NMA

SNN SNN SNN SNN SNN SNN
N,=100 N,=1000 N,=100 N,=1000 N,=100 N,=1000

Figure 4: Qualitative comparison showing the ranking of the four algorithsnth@ number of
nodes, the number of records akdre varied.
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Data set O°NN | §GTT | NMA T SAMA T N | k Np | method
haberman 0.35| 0.35| 0.00 | 0.00 4 4 306 | LOO
servo 056 | 066 | 0.15| 000| 5| 5 167 | LOO
lenses 037 045| 0.00| 0.03| 6| 6 24| LOO
hayes-roth 032 032| 0.00| 001 | 6| 6 132 | LOO
liver-disorders 0.14 | 0.07| 0.00 | 0.03 | 7| 7 345 | LOO
monks-3 083| 024| 082|000 7| 7 552 | T&T
monks-1 098 0.00| 0.98| 000, 7| 7 554 | T&T
monks-2 048 | 048 | 0.21 | 000 | 7| 7 600 | T&T
chess krkopt 054 | 000 | 054 | 0.32 7| 7| 28055 CV2
ecoli 0.03| 0.01| 0.02| 0.00O| 8| 8 336| LOO
yeast 0.04| 011 | 0.04 | 0.07 8| 8| 1484, CV2
post-operative 0.08| 046 | 0.01 | 0.09| 9| 9 90| LOO
prima-indian diab| 0.01 | 0.01 | 0.01 | 0.02| 9| 9 768 CV2
abalone 0.12| 0.08| 0.05| 0.00| 9| 9| 4176| CV2
cpu-performance| 0.13 | 0.31 | 0.01 | 0.11 10| 10 209 | CV2
glass 0.10| 0.04 | 0.15| 0.13 | 10| 10 214 | CV2
cmc 0.01| 0.07| 0.01 | 0.04 10| 10| 1473 CV2
sol-flare-C 0.03| 0.09| 0.02| 0.01|11]| 11 322| CV2
sol-flare-M 0.00 0.44 | 0.17 | 0.20 | 11 | 11 322 CV2
sol-flare-X 006 | 0.01| 0.18| 0.33 |11 | 11 322 CV2
page-blocks 0.30| 0.12 | 0.23 | 0.02 11| 11| 5473| CV2
wine 0.14| 001 | 0.16 | 0.06 | 14| 7 177 CV2
heart-disease 0.00| 0.07| 0.112 | 0.19 14| 6 294 | CV2
housing 0.20| 0.06 | 0.22 | 0.00| 14| 5 506 | CV2
credit-screening | 0.00 | 0.12 | 0.09 | 0.02 16| 5 652 | CV2
pendigits 058 | 0.00| 058 | 0.00 | 17| 6| 7495| T&T
letter-recognit 0.38| 0.00 | 0.38| 0.01 17| 5| 20000| T&T
thyroid-disease | 0.17 | 0.28 | 0.00 | 0.11 | 21| 5| 7200| T&T
soybean-small 0.00 | 0.00| 0.00 | 0.00 | 22| 4 47 | CV4
mushroom 086 | 0.00| 0.89 | 0.03 | 22| 4| 8124| CV2
spect 0.18| 0.38 | 0.16 | 0.00 | 23| 4 267 | T&T
brst-canc-wisc 0.28| 0.00| 0.29 | 0.23 32| 3 569 | CV2
connect-4 0.49 | 0.00 | 0.49 | 062 43| 2| 67557, CV2
spambase 0.24| 0.25| 0.00 | 0.10 | 58| 2| 4600| CV2

Table 6: Experimental results for 34 UCI data sets. The top scoring ctadsifieach data set is
underlined, the top two are shown in bold. AMA scored in the top one 13 ¢ifvB#s compared to
7,12 and 12 for SNN, GTT and NMA, respectively. It scored in the top 2& times compared to
11,17, and 19 for NMA, GTT and SNN, respectively.
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The average differenad between classifisrand AMA: A' = L 54 (8MA—&),), was calculated
to gauge the statistical significance of these experiments. The resultsoane ishTable 7. AMA
benefits over the naive models were significant at the 99% level, but athlg 85% level for GTT.

i A (%) | Q| Qu
SNN || 19+5] 0] 33
NMA || 13+5| 0| 23
GTT || 84| 0] 20

Table 7: Compiled UCI results. The error ranges denote the error of tae.me

Finally, the performance of AMA was also tested by generating training amdiéga with the
benchmark ALARM network. In this cash,= 36 andK = 4 were fixed by the network, and a test
was performed withk = 3, n= 10, and\p systematically varied. The results in Table 8 are shown for
classification on th&inked tube (ktandanaphylaxis (anyliagnostic nodes. Here, for small number

50| 32+13| 24| 55 3+3 -9 17
100 || 23+11 9| 53 1+3| -11| 16
200\ 13+9| -1| 32| -3+4| -17| 16
400 | 12+7| -1| 34| —-3x5| -21 18
800 4+7| 9| 23 2+5| -11| 21

3200|| 0+14| -19| 15 6+7 -8 19

Table 8: AMA performance v.s. GTT on synthetic data generated usingltA&R network and
classifying orkinked tubgkt) andanaphylaxigan).

of records, AMA outperformed GTT at the 99% significance level clgggifon thekinked tube
node; however, it showed no improvement when classifying oatlaghylaxisnode. These results
are notable because they demonstrate that the qualitative performane@MAaclassifier depends
not just on global network features but also on features specific tdahsification node. Precisely
what features of the classification node are important is an open questifutire research. The
prior probability ofanaphylaxiswas about 4 times smaller than thatkifiked tube however, the
local topology of the network may play a factor as well.

Obviously, using AMA was not without cost. The time to construct the modeld faemory
requirements) appeared to grow exponentially Wijtas shown in Table 9 fdd = 40.

5. Discussion

We have shown that, under certain assumptions, it is possible to constingteBayesian network
model, M, whose joint distribution will be identical to exact model averaging over tasscL,

of models consistent with a partial orderimgand having in-degree bounded ky Although for
most partial orderingdy! will be intractable to build and use for inference, we have demonstrated
two ways of putting this technique to practical use: first, by constructinggesimetwork with a
particular parameterization that produces approximate model averaggidtjuns, and second by
applying the method to the class of naive Bayes models, leading to a simplearegparization
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Np | Algorithm | train time | test time
AMA-4 330 0.101
AMA-3 27 0.038

100 | AMA-2 2.6 0.033
GTT 0.3 0.025
NMA 0.2 0.021
SNN 0.02 0.017
AMA-4 1000 0.113
AMA-3 96 0.035

1000| AMA-2 8.9 0.033
GTT 1.2 0.024
NMA 0.2 0.022
SNN 0.04 0.017

Table 9: Average training and testing times in seconds for the differentittlges with N = 40.
“AMA- m" refers to the average over all runs wkia= m.

that produces predictions equivalent to model averaging over allréestts, effectively solving the
feature selection problem for naive models in a Bayesian framework.

As an example of the utility of this method, we performed some empirical studiedassifica-
tion context, and showed that on both synthetic and UCI datasets, everelaiikigly little effort in
choosing a good value farand with simple noninformative priors, classifications can be beneficial
compared to other common BN classifiers. We have also demonstrated empihieaitjassifica-
tions obtained by model averaging over all naive features sets is very ikbly beneficial over a
single naive model chosen by selecting the MAP feature set. It can betedphat these results
would improve in real-world situations when expert knowledge about teafisde-orderings and
structure and parameter priors can be brought to bear.

Our empirical results provide evidence that Bayesian model averagmgngaiove prediction
over model selection, in contrast to the conclusions drawn by Doming08) #@at Bayesian learn-
ing exacerbates the over-fitting problem. First, in our experiments with nkssifters, model av-
eraging clearly produced better predictions compared to model selectiamis & the ROC area.
Second, in our experiments with approximate model-averaged (AMA) ckxssifiie observed the
trend that AMA classifications performed successively better as morearal structures were in-
cluded in the model averaging (i.e.,lawas increased). This conflicts with the assertion that model
generalization suffers when more models are considered in the avemguess.

In general, the benefits of AMA were not without cost. Construction time&\fdA models
were higher than other model types, and were observed empirically to expanentially as the
maximum in-degre& increased. Furthermore, when the approximation paramesdarge, infer-
ence with incomplete feature vectors can become prohibitive. The lattervahea is mitigated
by the fact that the AMA classifier is generally insensitive to the valug aflowingn to be mini-
mized without sacrificing classification accuracy. However, in casesaithe number of nodebl,
is very large, the cost of building the AMA classifier might outweigh the b&sefi this case, if the
number of recordd\p, is small then a naive model-averaged (NMA) classifier would probably be
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the most attractive since it performed comparably to AMA with orders of madaitaster training
time.

Once the model-averaging model is built, however, the technique has antage because of
its simplicity of implementation. Existing systems that use Bayesian network classiHietrivially
be adapted to use model averaging by replacing their existing model withla simgmary model.
This is especially relevant in cases where a naive classifier is curreity &mployed, as building
a NMA classifier retains the same linear time and space complexity requiredifding a naive
model.

As already stated, whemis large enough the approximation network can be extremely dense,
thus making inference difficult when the feature-vector is incomplete. Gayetavget around this
issue, when the incompleteness of the feature-vector is regular, is tsEzarate model-averaging
models on subsets of data in which the same set of features is missing. Thesimemvestment
of building several feature-vector-specific models would allow us t@¢Wd) inference even for
largen-values.

Future work includes finding a better method for optimizing the ordemingpssibly by doing
a search over orderings as in (Friedman and Koller, 2003), and geetsng cached sufficient
statistics with advanced data structures such as ADTrees (Moore and %) to increase the
practical limits ofk. There are a wealth of other classifiers that it would be interesting to cempar
with our approach: both non-probabilistic based models such as C4.&| metworks, support-
vector machines, etc., and other model-averaging techniques such agpthssnted in Madigan
and Raftery (1994) and Cerquides (2003)

It should also be possible to relax the assumption of complete training datarinytbe EM
algorithm or MCMC sampling to estimate parameters from data. Finally, the idetitificaf other
classes of BN models that easily fit within thg' class could lead to other especially efficient
solutions such as that obtained with the naive Bayes model.
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