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Abstract
In this paper1 we consider the problem of performing Bayesian model-averaging over a class of

discrete Bayesian network structures consistent with a partial ordering and with bounded in-degree

k. We show that forN nodes this class contains in the worst-case at leastΩ(
(N/2

k

)N/2
) distinct net-

work structures, and yet model averaging over these structures can be performed usingO(
(N

k

)

·N)
operations. Furthermore we show that there exists a single Bayesian network that defines a joint
distribution over the variables that is equivalent to modelaveraging over these structures. Although
constructing this network is computationally prohibitive, we show that it can be approximated by a
tractable network, allowing approximate model-averaged probability calculations to be performed
in O(N) time. Our result also leads to an exact and linear-time solution to the problem of averaging
over the 2N possible feature sets in a naïve Bayes model, providing an exact Bayesian solution to
the troublesome feature-selection problem for naïve Bayesclassifiers. We demonstrate the utility of
these techniques in the context of supervised classification, showing empirically that model averag-
ing consistently beats other generative Bayesian-network-based models, even when the generating
model is not guaranteed to be a member of the class being averaged over. We characterize the
performance over several parameters on simulated and real-world data.

Keywords: Bayesian networks, Bayesian model averaging, classification, naïve Bayes classifiers,
feature selection

1. Introduction

A probabilistic modelM over a set of variablesX, is a parameterization of the joint distribution
P(X) overX. There are many practical uses forP(X), including the ability to calculate expectations,
E(X), of configurations of variables, the ability to calculate themost likely explanationof some
observed evidence, the ability toupdate beliefsabout some variables given some other variables,
P(Xi ,Xj | X′), etc. In short virtually any probabilistic quantity of interest involvoing the variables
X can be calculated onceP(X) is known. Bayesian networks (BNs) (cf., Pearl, 1988) are a popular

1. This is a combined and expanded version of previous conference and workshop papers (Dash and Cooper, 2002,
2003).
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class of graphical probabilistic models that allowP(X) to be specified in practice even when|X| is
very large, by explicating independence between the variablesX.

Many algorithms for learning BNs from data (Verma and Pearl, 1991; Cooper and Herskovits,
1992; Spirtes, Glymour, and Scheines, 1993; Heckerman, Geiger, andChickering, 1995; Friedman,
Geiger, and Goldszmidt, 1997) have been used effectively to learn the structure of a BN model from
data, typically by performing a search over structures using the posteriorprobability,P(S | D), of the
structure given the data as a measure of quality. While learning a particular BN structure has shown
to be useful, it suffers from the fact that a single model makes strong independence assumptions
among the variables of interest that may not be true, or may only be approximately true in reality.
That is, the process of learning a single network affords no way of capturing the uncertainty in the
model structure. The most principled alternative to selecting a particular network structure, is to cal-
culate the full joint posteriorP(X | D) by averaging over all possible BN structures. Unfortunately,
the space of network structures is super-exponential in the number of model variables, and thus an
exact method for full model-averaging is likely to be intractable.

One especially common use for learning the joint distribution from data issupervised classifica-
tion. The general supervised classification problem seeks to create a model based on labelled data
D, which can be used to classify future vectors of featuresF = {F1,F2, . . . ,FN} into one of various
classes of interest. A probabilistic model accomplishes this goal by calculatingthe posterior proba-
bility, P(C | F), of the class given the features. One of the simplest probabilistic classifiers for this
task is the naïve classifier (cf., Duda and Hart, 1973), which, without inferring any structural infor-
mation from the database, can still perform surprisingly well at the classification task (Domingos
and Pazzani, 1997; Friedman, 1997; Ng and Jordan, 2002). Classification using a single Bayesian
network model and no missing feature-vector data can be performed inO(N) time. When the feature
vector is incomplete then standard algorithms (e.g., Lauritzen and Spiegelhalter, 1988) for Bayesian
network inference can be used for classification. The drawbacks of selecting a single model for clas-
sification manifests themselves as over-fitting of the data, leading to poor classification accuracy on
future data sets; however, model averaging has been shown to reduceover-fitting and provide better
generalization (Madigan and Raftery, 1994).

In this paper we consider the possibility of performing exact and approximate model-averaging
(MA) over a particular class of structures rather than over the generalspace of directed acyclic
graphs (DAGs). We show that exact model averaging over the class ofBN structures consistent
with a partial orderingπ and with bounded in-degreek, despite its super-exponential size, can be
performed with relatively small time and space restrictions.

There has been other work on making model averaging over Bayesian network structures ef-
ficient: Methods for approximate MA classification using both selective pruning (Madigan and
Raftery, 1994; Volinsky, 1997) and Monte-Carlo techniques (Madiganand York, 1995) exist and
have been shown to improve performance in prediction tasks; however these methods are approxi-
mate, and do not have the complexity guarantees that our method possesses. Friedman and Koller
(2003) studied the ability to estimate structural features of a network (for example the probability
of an arc fromXi to Xj ) by performing a MCMC search over orderings of nodes. Their method
relied on a decomposition, which they credit to Buntine (1991), that we extend in order to prove our
key theoretical result. We discuss this issue in detail in Section 3. Their workdiffers from ours in
two key respects: (1) Their approach does not capture the single-network (and thus the efficiency
of calculation) approximation to the MA problem, and (2) They perform modelaveraging only to
calculate the probabilities of structural features, explicitly not for prediction. Other work has been
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done (Meila and Jaakkola, 2000; Cerquides and de Màntaras, 2003) on performing exact model
averaging for prediction over all tree-structures inO(N3) time. This research also uses similar as-
sumptions and similar decompositions used by Friedman and Koller (2003) and inthis paper. Our
calculation is more general in allowing nodes to have more than one parent, but it is less general in
that it assumes a partial-ordering of the nodes.

The primary contributions in this paper are as follows: (1) we extend the decomposition of Bun-
tine (1991) to apply to the task of prediction, (2) we show that MA calculationsover this class can
be reproduced by a single network structureS∗ which, if it can be constructed tractably, thereafter
allows approximate MA predictions to be performed using standard Bayesiannetwork inference,
(3) we show that, for the class of naïve models, calculation ofS∗ (including parameters) can be
performed in linear time in the number of variables, and we demonstrate empiricallythat model av-
eraging over naïve classifiers improves performance, and (4) we develop a technique to make model
averaging practical for arbitrary orderings, and we demonstrate empirically that this technique can
result in improved classification (compared to other Bayesian network classifiers) even when no
ordering information is knowna priori.

Aside from the practical issue of achieving accurate predictions, our technique is interesting
from an analytical perspective. As an example, recently, Domingos (2000) made an argument based
on empirical and theoretical grounds that Bayesian model averaging canactually exacerbate the
over-fitting problem in machine learning. Empirically, he shows that rule-learners that approxi-
mate pure Bayesian model averaging closer and closer achieve successively higher error rates than
a rule-learner that uses the moread hoctechnique of bagging. He explains this observation as a con-
sequence of the likelihood’s exponential sensitivity to random fluctuationsin the data, and surmises
that the effect will be significant even for small data sets and will be amplifiedas the number of
models being averaged over increases. Our experiments here presenta direct test of this assertion,
obtaining results that conflict with the conclusions of Domingos.

In Section 2 we formally frame the problem and state our assumptions and notation, and re-
derive previous results. In Section 3 we derive the MA solution and showthat the MA predictions
are approximated by those of a single structure bearing a particular set ofparameters. In Section 4
we present the experimental comparisons, and in Section 5 we discuss ourconclusions and future
directions.

2. Previous Results

In this section we frame the problem, introduce our notation and review relevant previous research,
re-deriving the results of Friedman and Koller (2003) and Buntine (1991) and casting them into
notation that will allow us to extend them for prediction in Section 3.

2.1 Assumptions and Notation

The general supervised classification problem can be framed as follows: Given a set of features
F = {F1,F2, . . . ,FN}, a set of classesC = {C1,C2, . . .CNc}, and a labelled training data setD =
{D1,D2, . . . ,DND} generated from some distributionP, construct a model to predict into which
class future feature vectors sampled fromP are most likely to reside. We use the notationXi to
refer to the nodes when we need to have a uniform notation; we use the convention thatXi ≡ Fi and
X0 ≡C, and we useX to denote the collective set of nodes in the network. A directed graphG(X)
is defined as a pair〈X,E〉, whereE is a set of directed edgesXi → Xj , such thatXi ,Xj ∈ X. If X is a
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random variable, we letRng(X) denote the range ofX. We typically use boldface symbols to denote
sets and non-boldface type to denote elements of sets, when possible.

We are considering the problem of averaging over the space ofBayesian networkstructures.
For a set of variablesX, a Bayesian network onX is a graphical model which factorizes the joint
distributionP(X) overX. In particular:

Definition 1 (Bayesian network) Given a set X of N variables, a Bayesian network B on X is a
pair B = 〈S,θ〉, where S= 〈X,E〉 is a directed acyclic graph over X, andθ = {θ0,θ1, . . . ,θN} are
the parameters of the network that represent the set of conditional probability distributions for each
variable in X given its parents in S.

We make the following assumptions:

Assumption 1 (Multinomial variables) Each node Xi represents a discrete random variable with
r i possible states: Rng(Xi) = {x1

i ,x
2
i , . . . ,x

r i
i }.

We usePai to denote the parent set ofXi , and we letqi denote the number of possible joint con-
figurations of parents for nodeXi (definingqi=1 if Pai = /0), which we enumerate as:Rng(Pai) =
{p1

i , p2
i , . . . , pqi

i }; for example, ifXi has 3 binary parents thenqi = 8.
Under the assumption of multinomial variables, a conditional probability distributionθi for

variableXi will take the form of a conditional probability table (CPT) with componentsθi jk =

P(Xi = xk
i | Pai = p j

i ), and for a fixed network structureS, the componentsθi jk form the parame-
ters of the Bayesian network model and define the joint distribution over all variables assuming the
Markov condition holds. We use the symbolθi j to denote the entire conditional probability distri-
bution function for thei-th node and thej-th parent configuration, and the symbolθ to denote the
collective parameters of the network. In general we use the common(i jk) coordinates notation to
identify thek-th state and thej-th parent configuration of thei-th node in the network. We use the
shorthand that ifQi jk is some quantity associated with coordinates(i jk), thenQi j ≡ ∑k Qi jk .

Assumption 2 (Complete labelled training data) The training data set D contains no record Dl ∈
D such that Dl has a non-observed component.

We will discuss ways to relax this assumption in Section 5. We letNi jk denote the sufficient statistics
of the data set (i.e., the number of times that nodeXi achieved statek when parent setPai was in the
j-th configuration).

Assumption 3 (Dirichlet priors) The prior beliefs over parameter values are given by a Dirichlet
distribution.

We letαi jk denote the Dirichlet hyperparameter corresponding to the network parameter θi jk . For
simplicity, we assumeαi jk can be calculated inO(1) time and space; this is the case, for exam-
ple, with two popular metrics, the K2 metric (Cooper and Herskovits, 1992) and the BDeu metric
(Heckerman, Geiger, and Chickering, 1995).

Assumption 4 (Parameter independence)For any given network structure S, each probability
distributionθi j is independent of any other probability distributionθi′ j ′ :

P(θ | S) =
N

∏
i=0

qi

∏
j=1

P(θi j | S). (1)
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Finally, we take the assumption that the priors on parametersθi jk for a nodeXi depend only on
the local structure. This assumption is known asparameter modularity(Heckerman, Geiger, and
Chickering, 1995):

Definition 2 (Parameter modularity) Let X be a set of variables with Xi ∈X. For any two network
structures S1 and S2 over X, if Pai |S1 = Pai |S2 then P(θi jk | S1) = P(θi jk | S2).

2.2 Averaging Over Parameters with a Fixed Network Structure

One common goal in machine learning with Bayesian networks is to calculate the probability of a
configurationX = x of a set of variablesX. This can be used for predicting likely configurations of
variables, or it can be queried for any conditional probability of interestover the variables inX (e.g.,
P(X1,X2 | X3)) which could be useful for prediction. For a fixed network structureSand a fixed set
of network parametersθ, P(X = x | S,θ) can be calculated inO(N) time:

P(X = x | S,θ) =
N

∏
i=0

θiJK , (2)

where all( j,k) coordinates are fixed by the configuration ofX to the value( j,k) = (J,K).
When, rather than a fixed set of parameters, a databaseD is given, it is necessary to average

over all possible configurations of the parametersθ:

P(X = x | S,D) =
Z

P(X = x | S,θ) ·P(θ | S,D) ·dθ

=
Z N

∏
i=0

θiJK ·P(θ | S,D) ·dθ,

where the second line follows from Equation 2. Given the assumption of parameter independence
and Dirichlet priors, this quantity can be written just in terms of sufficient statistics and Dirichlet
hyperparameters (Cooper and Herskovits, 1992; Heckerman, Geiger, and Chickering, 1995):

P(X = x | S,D) =
N

∏
i=0

αiJK +NiJK

αiJ +NiJ
, (3)

where we have used the notation:αi j = ∑k αi jk . Comparing this result to Equation 2 illustrates the
well-known result that a single network with a fixed set of parametersθ̃ given by

θ̃i jk =
αi jk +Ni jk

αi j +Ni j
(4)

will produce predictions equivalent to those obtained by averaging overall parameter configurations.
We refer to Equation 4 as thestandard parameterization.

2.3 Averaging Structural Features with a Fixed Ordering

The decomposition by Buntine used by Friedman and Koller was a dynamic programming solution
which calculated, with relative efficiency, for example, the posterior probability P(XL→ XM | D)
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of a particular arcXL→ XM averaged over all in-degree-bounded networks consistent with a fixed
ordering. Friedman and Koller then showed how this quantity could be used ina MCMC search
for the most likely structural feature, where the search went over orderings instead of DAGs. One
might be interested in this quantity, for example, if you were interested in a Bayesian estimate for
the structural dependency relations of the system given the data; see Friedman and Koller (2003)
for more motivation for why this quantity would be useful. In this section we re-derive the result of
Buntine.

The derivation required the ability to calculate efficiently the prior probabilityP(S) that a given
structureSgenerated the databaseD. An additional assumption was introduced, labelledstructure
modularityby Friedman and Koller:

Assumption 5 (Structure modularity) The prior of a structure S, P(S), can be factored according
to the network

P(S) ∝
N

∏
i=0

ps(Xi ,Pai), (5)

where ps(Xi ,Pai) is some function that depends only on the local structure (Xi and Pai).

Any metric that assesses the structure priorP(S) based on a difference in arcs betweenSand some
prior network structureS′ (as suggested by Heckerman, Geiger, and Chickering (1995)) will satisfy
this condition. Also the uniform distribution will obviously satisfy this assumption,and requires
O(1) time to assess. Obviously, we restrict ourselves to structures that give probability zero to a
non-acyclic DAG.

The posterior probabilityP(XL→ XM | D) can be written as

P(XL→ XM | D) =

c∑
S

δK(XL→ XM ∈ S) ·P(D | S) ·P(S), (6)

wherec= 1/P(D) is a constant that depends only on the database, andδK(Z) is the Kronecker delta
function:

δK(Z) =

{

1 if Z = true
0 otherwise.

The summation in Equation 6 includes a super-exponential number of networkstructures, and
therefore appears to be intractable. Buntine handled this problem by imposinga total ordering on
the nodes and restricting the maximum number of parents,k, that each node can have. Generalizing
his results to a partial orderingπ instead of a total ordering is straightforward, and we do that here.
For a given partial orderingπ and a particular nodeXi , it is required to enumerate all ofXi ’s possible
parent sets up to a maximum sizek. To this end, we will typically use the superscriptν to index
the different parent sets. For example, four nodes partitioned asπ = 〈{X1,X3},{X2,X4}〉 and a
maximum in-degreek = 2 would yield the following enumeration of parent sets forX2: {Pa0

2 =
/0,Pa1

2 = {X1},Pa2
2 = {X3},Pa3

2 = {X1,X3}}.
The class of models consistent withπ with bounded in-degree ofk we denote asLπ

k :

Definition 3 (Lπ
k ) For a given integer k≤ N and a given partial orderingπ of X, a DAG G=

〈X,E〉 ∈ Lπ
k iff arcs are directed from higher to lower levels and no variable has more than k

parents: Xi → Xj ∈ E⇒ π(Xi) > π(Xj ), and Xi ∈ X⇒ |Pai | ≤ k.
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Note that ifD1,D2∈Lπ
k andD1 6= D2 thenD1 is statistically distinguishable fromD2 because it will

include a different set of adjacencies (Verma and Pearl, 1991); so when averaging over the classLπ
k ,

we are never averaging over equivalent DAGs.

The number of structures inLπ
k is still exponentially large in the worst-case; each node at level

l can choose up tok parents from among all the nodes in levelsl ′ > l . For k ≤ N/2, Lπ
k in the

worst-case includes at leastΩ
[

(N/2
k

)N/2
]

network structures. This result corresponds to the case

whereπ consists of two levels, each withN/2 nodes; each of theN/2 nodes in the bottom level can
therefore choose up to

(N/2
k

)

possible parents.2

Given the assumptions of this paper,P(D | S), can be written just in terms of hyperparameters
and sufficient statistics (Cooper and Herskovits, 1992; Heckerman, Geiger, and Chickering, 1995):

P(D | S) =
N

∏
i=0

qi

∏
j=1

Γ(αi j )
Γ(αi j +Ni j )

·
r i

∏
k=1

Γ(αi jk +Ni jk)
Γ(αi jk)

. (7)

Given structure modularity (Assumption 5) and Equation 7, Equation 6 can bewritten as

P(XL→ XM | D) = c∑
S

N

∏
i=0

ρS
iLM . (8)

TheρS
iLM functions are given by

ρS
iLM = δK [M 6= i∨XL ∈ Pai ] · ps(Xi ,Pai) ·

qi

∏
j=1

Γ(αi j )
Γ(αi j +Ni j )

·
r i

∏
k=1

Γ(αi jk +Ni jk)
Γ(αi jk)

, (9)

and can be calculated using information that depends only on nodesXi andPai .

Even restricting structures to those in a particularLπ
k class, as already mentioned, the summation

in Equation 8 still contains an exponential number of structures in the worst-case. However, the
following theorem (similar to one from Buntine (1991)) shows thatP(XL→ XM | D,Lπ

k ) can be
calculated with relative efficiency:

Theorem 1 Assuming S∈Lπ
k , equation 8 can be written as P(XL→ XM | D,Lπ

k ) = c∏N
i=0 ∑µi

ν=0 ρν
iLM ,

whereρν
iLM denotesρS

iLM for the νth parent set Paνi of Xi and the summation goes over all parent
sets available to node Xi under the restrictions ofLπ

k .

Proof: For notational simplicity, we will drop theLM subscripts on theρ functions:ρν
i ≡ ρν

iLM .
Expanding the sum in Equation 8 yields

2. We are not asserting that this two-level ordering is the absolute worst-case, only that the worst-case must have at least
this many network structures.
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P(XL→ XM | D,Lπ
k ) ∝

ρ0
0 ·ρ

0
1 · . . . ·ρ

0
N

+ ρ1
0 ·ρ0

1 · . . . ·ρ
0
N

...
...

+ ρµ0
0 ·ρ

0
1 · . . . ·ρ

0
N

+ ρ0
0 ·ρ

1
1 · . . . ·ρ0

N
+ ρ1

0 ·ρ1
1 · . . . ·ρ0

N
...

...
+ ρµ0

0 ·ρ
1
1 · . . . ·ρ0

N
...

...
+ ρ0

0 ·ρ
0
1 · . . . ·ρ

1
N

+ ρ1
0 ·ρ0

1 · . . . ·ρ
1
N

...
...

+ ρµ0
0 ·ρ

0
1 · . . . ·ρ

1
N

...
...

+ ρµ0
0 ·ρ

µ1
1 · . . . ·ρ

µN
N



































































































































Ω

[

(

N/2
k

)N/2
]

terms, worst-case.

We define the symbolΣm to denote the structure sum of the product up to and including them-th
node:

Σm ≡ ρ0
0 ·ρ

0
1 · . . . ·ρ

0
m

+ ρ1
0 ·ρ0

1 · . . . ·ρ
0
m

...
...

+ ρµ0
0 ·ρ

µ1
1 · . . . ·ρ

µm
m .

Using this notation, the following recursion relation can be derived:

Σi = Σi−1 ·
µi

∑
ν=1

ρν
i , Σ−1 = 1.

Finally, expanding the recurrence relation yields the expression forP(XL→ XM | D,Lπ
k ):

P(XL→ XM | D,Lπ
k ) = c

N

∏
i=0

µi

∑
ν=1

ρν
i . (10)

2

Thus, a summation ofΩ
[

(N/2
k

)N/2
]

terms can be performed inO
[

(N
k

)

·N
]

operations.

3. Model Averaging for Prediction

In this section we show how to extend the results of Section 2 to efficiently calculate the quantity
P(X = x | D,Lπ

k ) averaged over the classLπ
k .
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This quantity can be written as

P(X = x | D,Lπ
k ) =

1
P(D) ∑

S∈Lπ
k

N

∏
i=0

θ̃iJK ·P(D | S) ·P(S), (11)

whereθ̃iJK are the standard parameters given in Equation 4. Given structure modularity and Equa-
tion 7, Equation 11 can be written in a form very similar to Equation 8:

P(X = x | D,Lπ
k ) = c ∑

S∈Lπ
k

N

∏
i=0

ρ̃iJS
x Kx

, (12)

where here thẽρiJS
x Kx

functions are given by

ρ̃iJS
x Kx

= θ̃iJS
x Kx
·

qi

∏
j=1

Γ(αi j )
Γ(αi j +Ni j )

·
r i

∏
k=1

Γ(αi jk +Ni jk)
Γ(αi jk)

· ps(Xi ,Pai), (13)

andc is a constant (not dependent onS) equal to 1/P(D). We subscript the indicesJ andK from
Equation 2 with anx to indicate that they are fixed by a particular configuration ofX, andJ is indexed
by Sto emphasize that the value of the parent configuration index depends on the number of parents
and therefore the structureS of the network. Although this notation may seem cumbersome, we
believe it clarifies the analysis later.

As in Section 2.3, the worst-case number of terms in the summation of Equation 12 isexponen-
tial in the number of featuresN. Theρ̃iJS

x Kx
functions again can be calculated using only information

local to nodeXi andPai . Following a derivation identical to that for averagingP(XL→ XM | D,Lπ
k )

in Section 2.3, yields the following :

P(X = x | D,Lπ
k ) = c

N

∏
i=0

µi

∑
ν=1

ρ̃ν
iJν

x Kx
. (14)

Here theS index has been replaced with aν indicating which parent set for nodeXi is being consid-
ered. The following theorem shows that this summation can be performed inO(

(N
k

)

·N · k ·ND ·R)
time andO(k ·ND) space.

Theorem 2 For N variables with a maximum number of states per variable given by R anda
database of ND records, Equation 14 can be calculated in O(

(N
k

)

·N · k ·ND ·R) time and using
O(k ·ND) space.

Proof: The right-hand-side of Equation 14 includesN products and
(N

k

)

sums. Eachρν
iLM term can

be calculated inO(k ·ND ·R) time andO(k ·ND) space. This result follows because all sufficient
statistics for a given nodeXi can be stored in a tree of depthO(k) and widthO(ND), with the leaves
of the tree holding the sufficient statistic for the given configuration ofXi andPa(Xi). To fill the tree
requiresND passes of the tree, thus takingO(k ·ND) time. Once the tree is constructed, it can be
queried for any statistic inO(k) time.

The number of possible parent configurations present in the data are bound by the number of
recordsND; thus the number of(i, j) configurations for whichNi j 6= 0 is O(ND). Furthermore, all
terms in the product of Equation 14 for whichNi j = 0 will equal 1 so will not contribute to the
product. Thus, the calculation of products in Equation 13 requireO(k ·ND ·R) time.

Putting all the steps together yields the claim of the theorem. 2
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Although this result is relatively efficient, for classification purposes it maystill be too complex
of a calculation. The functional form of the above solution allows us to prove that exact model
averaging overLπ

k can actually be performed with a single Bayesian network structure:

Theorem 3 There exists a single Bayesian network model M∗ = 〈S∗,θ∗〉 that will define a joint
distribution P(X = x | S∗,θ∗) that is equivalent to that produced by model averaging over all
models inLπ

k .

Proof: Let S∗ be defined so that each nodeXi has the parent setPa∗i =
Sµi

ν=1Paν
i , and letθ∗ be

defined by

θ∗i jk = c1/N
µi

∑
ν=1

ρ̃ν
iJν

j k, (15)

where thex subscript forJν
x has now been replaced with aj and Kx has been replaced with a

k subscript, because we are considering a particular coordinate(i jk). It can be seen by direct
comparison that substitutingθ∗i jk into Equation 2 will yield Equation 14. 2

If we define functionsf (Xi ,Paν
i | D) such thatf (Xi ,Paν

i | D) = ρ̃ν
iJν

j k/θ̃ν
iJν

j k, then Equation 15 can

be written as

θ∗i jk = c1/N
µi

∑
ν=1

θ̃ν
iJν

j k · f (Xi ,Paν
i | D). (16)

The functionsf (Xi ,Paν
i | D) do not depend on the indicesJν

j andk, and they can be interpreted as
the local posterior probability that the parent set ofXi is in factPaν

i . Equation 16 thus provides the
interpretation thatM∗ represents a structure-based smoothing where each standard parameter θ̃ν

i jk
is weighted based on the likelihood thatPaν

i is the parent set ofXi . Sinceθ∗i jk is interpretable as a

probability, the constantc1/N serves as a normalization constant and need not be calculated directly.
There are some numerical complexities with calculating the parameters using Equation 16. One

must essentially calculate quantities of the form

θ∗i = c1/N ∑
ν

θ̃ν
i ·explf ν

i , (17)

wherel f ν
i = log f ν

i is a negative number with large absolute value. Exponentiating this value will
usually be truncated to zero using floating-point arithmetic. In reality however, the normalization
constantc1/N is also very small and in fact makesθ∗i nonzero in many cases. To get around this
problem, we use a known trick of shifting the exponentials so the largest termis equal to 1. The net
result of this is to change the normalization constant, which is never calculatedexplicitly, i.e.

c1/N ∑
ν

θ̃ν
i ·explf ν

i =
c1/N

exp(−lf max)
∑
ν

θ̃ν
i ·exp(lf ν

i − lf max), (18)

Theorem 3 implies that, rather than performing theO(
(N

k

)

·N) summation in Equation 14 for
each case to be classified, in principle we need only construct a single model M∗ and use standard
Bayesian network inference for each case. In the case of a completely instantiated feature vector,
this inference can be completed inO(N) time; otherwise BN inference can be used. Unfortunately
for almost all realistic partial orderingsM∗ will be a highly dense network and memory requirements
will be prohibitive. Furthermore, the network structureS∗ would be non-interpretable by a human.
The intractability ofM∗ is a central problem with applying this method in practice, and we devote
most of the remainder of this paper to presenting ways to remedy this problem.
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3.1 Model Averaging over Naïve structures

One popular class of models that fits into theLπ
k schema is the class of naïve (simple) Bayes models.

The naïve classifier is a probabilistic model that accomplishes classification by making the assump-
tion that any featureFi ∈ F is conditionally independent of any other featureFj ∈ F given the value
of the class variableC. The naïve model can be represented by the Bayesian network shown in
Figure 1.

C

F1 F2 F3 … FN

…

Figure 1: A naïve network:C is the class node which can take on one value for each possible class,
and theFi denote features of interest.

Naïve classifiers have several desirable features: First, they are simpleto construct, requiring
very little domain background knowledge, as opposed to general Bayesian networks which can
require numerous intensive sessions with experts, or a large real-worlddatabase to learn the de-
pendence structure between features. Second, naïve networks can be built with very constrained
space and time complexity: constructing a network requires the estimation of a set of O(N ·R·Nc)
parameters, whereR is the maximum number of feature states andNc is the number of class states.
Each of which can be estimated from data in timeO(ND), whereND is the number of records in the
database. Inference with naïve networks is also efficient; classification of a new feature vectorF ′

can be performed in timeO(|F ′|), even ifF ′ is an incomplete instantiation of features.
Despite their simplicity, these classifiers have been shown to perform surprisingly well in prac-

tice. Domingos and Pazzani (1997) have shown that naïve classifiers can be optimal (in terms of
classifcation accuracy) even when the underlying distribution does not satisfy the naïve assump-
tions. Friedman (1997) argues that the low variance of the naïve classifiercan mitigate the bias,
resulting in overall accurate predictions. Finally, Ng and Jordan (2002)show both theoretically and
empirically that the naïve classifier converges quickly to its asymptotic error-level. These studies
explain why the naïve model has continued to compare favorably to state-of-the-art classification
algorithms.

The construction of a naïve classifier given a setF of potential attributes requires only two gen-
eral steps: (1) Select the subset of featuresF ′ ⊆ F judged to be relevant to classification, and (2)
Calculate the set̃θ of parameters using Equation 4. The feature selection problem (1) is a difficult
and central problem in machine learning in general. In terms of naïve classifiers, the selection of
the appropriate subsetF ′ has been shown to be both important to classification and non-trivial to
perform in practice (Langley and Sage, 1994; Kohavi and John, 1997; Friedman, Geiger, and Gold-
szmidt, 1997). Obviously eliminating features that do not bear on the classification is important, but
also important is the ability to minimize redundant features.

Our method allows us to take a strict Bayesian approach to feature selection;rather than finding
a single “good” setF ′, we can efficiently address the problem of model averaging predictions over
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all 2N possible feature-set structures. An enumeration of these different structures is illustrated in
Figure 2.

C

F1 F2 F3 … FN

…

C

F1 F2 F3 … FN

…

C

F1 F2 F3 … FN

…

C

F1 F2 F3 … FN

…

C

F1 F2 F3 … FN

……

Figure 2: Enumerating all the 2N possible naïve Bayes net structures.

The summary modelM∗, defined in Theorem 3, for the naïve class is especially simple, itself
being a naïve network overall features. Equation 16 for a naïve Bayes net reduces to

θ∗i jk ∝ θ̃ /0
i jk · fi( /0 | D) + θ̃C

i jk · fi({C} | D), (19)

where fi( /0 | D) and fi({C} | D) are proportional to the local posterior probability ofPai = /0 and
Pai = {C}, respectively. The sufficient statistics and Dirichlet priors required for this calculation
are the same as those needed for calculating the parameters of (a) a single network with no arcs
present, and (b) a single naïve network with all arcs present. This reparameterization requires order
O(N ·ND) time and space requirements, which are the same that are needed to calculatethe standard
parameters of a single naïve network over allN features. We call a naive structure so parameterized
a Naïve model averaging(NMA) classifier. In Section 4 we present empirical results showing that
this reparameterization, over a wide range of experimental parameters, almost always produced
better classification results than a standard naïve model.

3.2 Approximate Model Averaging

As noted in Section 3, a serious practical difficulty with constructingM∗ according to Theorem 3
when no ordering is known, is that it requires in the worst case the construction of a completely-
connected Bayesian network and inference can thus be intractable for all but smallN. An obvious
pruning strategy, however, is to truncate the sum in Equation 15 to include nomore thann parents.
Here we present one possible method for selecting then most important parents for each node.

If we reorder the possible parent sets for nodeXi asOP≡{Pa1
i , . . . ,Paµi

i } such thatf (Xi ,Paν
i | D) >

f (Xi ,Paλ
i | D) if and only if ν < λ, then an approximation forPa∗i can be constructed by the following

procedure:

Procedure 1 (ApproximateP∗i construction)
Given: n andOP.

1. Let Pa∗i = /0

2. For ν = 1 to µi ,
if |Pa∗i ∪Paν

i | ≤ n, let Pa∗i = Pa∗i ∪Paν
i , else continue.
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We denote the class of structures being averaged over using this procedure asLπ
kn(D), and we call

the methodApproximate Model Averaging(AMA). Obviously Lπ
kN(D) = Lπ

k . Furthermore, we
empirically show in Section 4 that the loss in ROC area,ε, due to this approximation forn≥ 10
lies around−0.6%≤ ε ≤ 0.6% with 99% confidence forN ≤ 100 and for a wide range of other
parameters. We also show empirically that classifications are not typically sensitive to the value of
n, so oftenn can be made relatively small without degrading classification results.

4. Experimental Tests

In this section we describe several experimental investigations that were designed to test the perfor-
mance of NMA and AMA on arbitrary distributions. We first generate synthetic data to allow us
to more extensively vary parameters, then we perform tests on several real-world machine learning
data sets. All experiments were implemented in C++ using code that was based on theStructural
Modelling, Inference and Learning Engine(SMILE) (Druzdzel, 1999), a library for constructing
probabilistic decision support models.3 Experiments were run on an 1.6 GHz Pentium PC with 1
GB of RAM running Windows XP.

4.1 Experimental Setup

There are at least five parameters for which we sought to characterizethe performance of classifier
predictions: the number of nodesN, the approximation limitn on the size of the maximum in-degree
in the summary network, the maximum in-degree (“density")K of the generatingnetwork, the
maximum in-degreek (k≤ n) allowed in models inLπ

k , and the number of recordsND. It is beyond
the scope of this paper to present a comprehensive comparison over thisfull five-dimensional space;
however, here we sample their settings to provide insight into the dependence of the results on these
parameters.

In our experiments, four classifiers were compared: AMA using a fixed partial ordering, a
NMA classifier, a single naïve network (SNN) with the standard parameterization (Domingos and
Pazzani, 1997), and a non-restricted two-stage greedy thick-thin (GTT) model selection over the
space of DAGs, which is described below.

The algorithm used to generate the GTT model, which assumes no ordering onthe nodes, is as
follows:

Procedure 2 (Greedy thick-thin search)
Given: a networkSwith no arcs.
Do:

1. Repeatedly add the arc whose addition maximally increases the marginallikelihood P(D | S)
without creating a cycle until no increase is possible.

2. Repeatedly delete the arc whose deletion maximally increases P(D | S) until no increase is
possible.

The inner-loop of each test performed the same procedure: Given the six parameters{N,ND,Ntest,K,n,k},
we did the following:

3. SMILE can be downloaded from http://www.sis.pitt.edu/˜genie; however the learning functionality required for our
experiments is not yet available for public release.
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Procedure 3 (Basic testing loop)
Given: N, ND, Ntest, K, n, k.
Do:

1. Generate a random Bayesian network B= G(N,K).

2. Sample ND training records and Ntest test records from the distribution defined by B.

3. Train two classifiers to be compared, M1 (typically the AMA classifier) and M2 (the classifier
to be compared), on the training records.

4. Test M1 and M2 on the test data, measuring the ROC areas R1 and R2, respectively, of each.

5. Calculate the quantityδ = R1−R2
1−R2

.

TheROC Areaof a classifier (cf., Egan, 1975), is the area of the curve showing the true-positives
of the classifier versus the false-positives as the sensitivity of the classifier is swept out from 0 to
1. It has been used with increasing frequency in machine learning because it provides an objective
evaluation of a classifier without requiring the specification of a particular utility function (e.g.
zero-one loss).

The performance metricδ indicates what percentage ofM2’s missing ROC area (1−R2) is
covered byM1: If M1 is perfect thenδ will be 1, if M1 is equivalent toM2 thenδ will be 0, and if
M1 is worse thanM2 thenδ will be negative (see Figure 3). For each configuration of experimental

1

1

0

0

R
1
-R

2

R
2

R
1

Figure 3: The performance metricδ used in our experiments measures the fraction of ROC area
captured by our classifier (with ROC areaR1) versus some other classifier (with ROC
areaR2).

parameters, this procedure was repeatedNtrials times andδ was averaged over these trials.
For some experiments it was necessary to generate networks randomly. Weemployed a lazy

data generation procedure whereby node conditional probability distributions were generated only
when they were required by the sampling, a technique which allows generation of data for arbitrarily
dense networks. The algorithm for selecting network structures at random is as follows:

Procedure 4 (random structure generation)
Given: a set of nodesV; number of records,ND; and maximum in-degree,K.
Do:
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1. Construct a total ordering o(V) over the variables.

2. For each node Vi do:

(a) Choose a number of parents, np, uniformly at random from{1, . . . ,K}.

(b) Select, uniformly at random,min(np,o(Vi)) parents P such that o(P) < o(Vi).

The choice of the proper set of noninformative structure priors is non-trivial, and in these ex-
periments we do not attempt to address the subtle complexities inherent in this process. In all cases
we assume a uniform prior over non-forbidden structures and thus allowps(Xi ,Pai) = 1/µi for all
i. These priors will put overwhelming mass on networks with a “medium" number of arcs be-
cause there exist many more of these DAGs. We also adopted the K2 parameter prior which sets
αi jk = 1 for all (i, j,k). This criterion has the property of weighting all local distributions of param-
eters uniformly, and has been shown empirically to be an effective non-informative prior (Cooper
and Herskovits, 1992; Heckerman et al., 1995). All variables in our synthetic tests were binary,
Nc = R= 2, andNtest = 1000, and we typically chose an exponentially increasing sequence of val-
ues forN to test the benefits of the algorithms on a wide-range of scenarios. In many experiments
we sampled the in-degree of generating graphsK uniformly from the set{1,2, . . . ,N}; we use the
notationK←↩ {1, . . . ,N} to denote this procedure.

In all experiments,π for AMA was chosen to be a fixed total ordering of the variables. At
least three heuristics were used to generateπ: (1) generate a random ordering, (2) generate two
opposite random orderings and average predictions of each, and (3)use a topological sort of the
graph obtained by GTT. In preliminary experiments, these methods producedcomparable results,
but (2) and (3) performed a few percent better. In all results presented below, method (3) was used
to generateπ.

All abbreviations and symbols are summarized in Table 1 as a reference forthe reader.

Symbol Description
N Number of nodes
ND Number of training records
Ntest Number of testing records
Ntrials Number of times Procedure 3 was repeated

K Maximum in-degree of generating graphs
k Maximum in-degree inLπ

k
n Maximum in-degree in summary MA network (Section 3.2)

SNN Single naïve network (with feature selection)
NMA Naïve model averaging
GTT Greedy thick-thin
AMA Approximate model averaging

Table 1: Table of symbols relevant to experiments.
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4.2 Experimental Results

In this section we present a range of experimental tests we performed using data generated from
random graphs, data generated from the standard benchmark ALARM network, and data from real-
world data sets from the UCI database.

4.2.1 NAÏVE MODEL AVERAGING VERSUS ASINGLE NAIVE NETWORK

It has been shown (Domingos and Pazzani, 1997) that the naïve classifier with the standard parame-
terization can be optimal under zero-one loss even when the underlying independence assumptions
are incorrect. That, together with the fact that calculating parameters for this model can be done
with a single pass through the data, make it a useful and widely used model for classification, and it
would be interesting if we find a model that has the same ease of calculation butperformed signif-
icantly better. There are, of course, many other classifiers that we couldcompare to, in particular,
optimizing the conditional likelihood under the naïve network assumptions corresponds to a logistic
regression model which has also shown to do well for classification. We defer comparisons of our
method to logistic regression and other models for future work.

As Section 3.1 shows, using NMA it is possible to model average over all features sets for a naïve
model simply by reparametrizing a single naïve network according to Equation 19. Because of the
simplicity of this technique (an existing naïve classifier could trivially be replaced with a model-
averaging version just by a change in parameters), we performed an extensive set of comparisons
of NMA versus a SNN using synthetic data generated from randomly-constructed (not necessarily
naïve ) Bayesian networks.

Feature selection for the SNN was performed by successively adding thearc that maximized
the posterior probability of the network structureS until no arc resulted in an increase. Although
this is a greedy strategy, for SNN under the assumptions taken in this paper,it results in a structure
that globally maximizes the posterior probability given the data. This can be seen because, given
structure modularity, the marginal likelihood for a given arc is independentof all other arcs in the
network.

We tested the relative performance of SNN versus a single naïve model (SNNall ) overall fea-
tures (i.e., without any feature selection) by performing Procedure 3 withN varied over the set{10,
20, 40, 80, 100, 320}, with ND varied over the set{100, 200, 400, 800, 1600, 3200, 6400} and with
K ←↩ [1, . . . ,N]. We found that for all configurations of experimental parameters, SNN dominated
SNNall , with averageδ = 29%± 1%. Because of this, we do not include SNNall in any of our
comparisons to AMA, NMA or GTT.

In the evaluation of NMA performance over SNN performance, we simultaneously variedN
from the set{10, 20, 40, 80, 160}, ND from the set{50, 100, 200, 400, 800, 1600, 3200, 6400},
andK from the set{5, 10,20, 40,80, 160} (obviously howeverK ≤ N). We usedNtrials = 1000
in order to establish clear statistical significance. The results are shown in Table 2. The remaining
area covered by NMA ranged from a fraction of one percent to 17%, but in all save one of the 160
configurations measured, the improvement of NMA was significant at the 99% level, the general
trend being that NMA performed better for smaller values ofN and ND. The lower and upper
quartiles (i.e., the 25% and 75% quantiles: the values ofδ that confine the middle 50% of the values
of δ that we observed in our tests) show the true spread of the data, i.e., because of the large number
of trials, the confidence intervals in the mean are not indicative of the widths of the distributions.
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4.2.2 MODEL AVERAGING OVER Lπ
kn(D) VERSUSLπ

k

Since, as we have already mentioned, averaging over the full classLπ
k requires considerable calcula-

tion using Equation 14, we must resort in general to using the single summary network and instead
only averaging over the classLπ

kn(D). We were interested in testing what price we pay in terms of
classification for reducing the size of the space of models. The first set of experiments we performed
tested the degree of error incurred by model averaging overLπ

kn(D) instead of the full classLπ
k .

ND→ 50 100 200 400
N K δ (%) Ql Qu δ (%) Ql Qu δ (%) Ql Qu δ (%) Ql Qu

10 5 17.2±1.6 8.4 24.0 17.0±1.4 9.5 22.8 16.5±1.4 8.7 21.7 14.0±1.2 7.3 19.4
10 10 17.1±1.6 7.7 23.6 16.9±1.4 9.2 23.9 16.2±1.4 7.9 23.5 15.5±1.3 7.8 21.2
20 5 8.7±1.1 3.1 12.1 8.7±1.0 3.7 12.2 8.4±0.9 4.1 11.3 9.0±1.0 3.9 13.3
20 10 8.1±1.0 3.2 12.4 10.0±1.3 3.5 13.5 9.6±1.0 4.7 12.5 8.9±1.1 3.3 11.9
20 20 8.5±1.0 3.7 11.9 9.6±1.1 3.8 13.9 10.1±1.1 4.4 13.7 9.8±1.1 4.2 13.4
40 5 3.8±0.8 0.3 7.3 3.5±0.6 0.8 6.2 4.5±0.6 1.7 6.9 4.6±0.6 1.5 5.7
40 10 3.0±0.6 0.2 5.5 4.2±0.6 1.3 6.6 3.8±0.6 0.8 5.7 4.6±0.7 1.5 6.2
40 20 3.0±0.6 0.2 4.8 4.6±0.7 1.5 6.9 4.4±0.9 1.1 6.7 6.1±1.0 2.1 7.9
40 40 2.2±0.5 −0.2 4.2 3.5±0.7 0.6 5.7 4.6±0.7 1.4 6.8 5.9±0.8 2.0 8.1
80 5 2.8±0.7 −0.4 4.9 2.7±0.6 −0.2 5.0 2.4±0.5 0.1 4.3 2.1±0.4 0.3 3.8
80 10 1.6±0.5 −0.6 2.9 1.5±0.5 −0.8 3.7 2.1±0.4 0.0 3.7 2.6±0.4 0.6 4.4
80 20 1.2±0.5 −0.7 2.6 1.3±0.5 −0.7 2.9 1.9±0.4 −0.1 3.6 2.4±0.5 0.2 4.0
80 40 0.7±0.5 −1.1 2.1 1.0±0.4 −1.1 2.8 1.4±0.5 −0.5 3.1 2.3±0.5 0.1 3.9
80 80 0.7±0.5 −1.0 1.9 1.0±0.4 −0.8 2.6 1.8±0.4 −0.1 3.1 2.4±0.5 0.1 4.4

160 5 2.0±0.6 −0.9 3.6 2.2±0.6 −0.9 4.5 2.2±0.5 −0.1 4.1 1.6±0.4 −0.3 3.2
160 10 1.2±0.5 −1.0 2.8 1.8±0.5 −0.5 3.8 1.6±0.4 −0.6 3.8 1.2±0.4 −0.6 2.9
160 20 1.1±0.5 −0.5 2.2 0.9±0.4 −1.0 2.6 1.0±0.4 −0.7 2.9 0.9±0.4 −1.0 2.6
160 40 0.6±0.4 −1.0 1.7 0.5±0.4 −1.3 2.0 0.5±0.4 −1.0 1.9 0.8±0.4 −1.1 2.4
160 80 0.6±0.4 −1.1 1.6 0.5±0.4 −1.3 2.0 0.5±0.3 −1.2 1.9 0.7±0.4 −1.1 2.4
160 160 0.1±0.3 −1.4 1.5 0.7±0.4 −1.1 2.0 0.7±0.3 −0.9 2.3 0.5±0.4 −1.2 2.1

ND→ 800 1600 3200 6400
N K δ (%) Ql Qu δ (%) Ql Qu δ (%) Ql Qu δ (%) Ql Qu

10 5 13.8±1.3 6.7 19.2 11.5±1.0 5.2 15.8 11.5±1.2 4.3 17.1 10.0±1.3 2.9 14.5
10 10 12.3±1.2 5.5 18.1 10.5±1.2 3.9 14.3 8.4±1.1 2.9 11.3 8.4±1.1 2.4 11.9
20 5 7.7±0.9 2.6 11.7 7.7±1.0 1.8 11.8 5.9±0.9 1.2 8.2 5.7±1.0 0.9 7.8
20 10 8.2±1.0 2.8 12.6 6.0±0.9 1.6 8.5 3.4±0.7 0.7 4.0 3.1±0.6 0.4 3.7
20 20 8.7±1.1 2.8 12.6 7.4±1.0 2.0 11.2 5.8±0.9 1.1 7.5 5.0±0.9 0.6 6.7
40 5 4.6±0.7 1.3 6.3 3.1±0.6 0.7 3.9 3.7±0.7 0.5 4.3 3.4±0.8 0.2 3.6
40 10 4.8±0.7 1.6 6.5 3.5±0.6 1.0 4.4 3.1±0.7 0.5 3.3 2.3±0.6 0.2 2.2
40 20 6.0±0.8 1.8 8.2 6.1±0.9 1.6 8.8 5.4±0.9 0.8 8.0 5.0±1.0 0.5 7.7
40 40 7.5±1.0 2.7 10.0 6.6±1.0 1.7 10.0 7.3±1.0 1.1 11.0 5.9±1.0 0.6 9.6
80 5 2.3±0.4 0.5 3.4 2.0±0.5 0.3 2.7 2.2±0.5 0.2 2.7 1.8±0.5 0.1 1.8
80 10 2.3±0.4 0.6 3.6 2.3±0.4 0.5 3.2 1.9±0.4 0.4 2.4 1.3±0.3 0.1 1.4
80 20 2.7±0.5 0.7 4.5 3.0±0.5 0.8 4.4 3.9±0.6 0.8 5.1 3.6±0.6 0.6 5.1
80 40 2.9±0.5 0.6 4.4 3.9±0.6 0.9 5.6 5.4±0.8 1.3 8.0 5.2±0.7 1.0 7.6
80 80 3.3±0.5 0.9 5.3 4.0±0.6 1.0 6.3 4.9±0.8 1.0 7.5 5.2±0.7 0.7 7.9

160 5 1.3±0.4 −0.1 2.8 0.8±0.3 −0.5 1.9 0.9±0.3 −0.1 1.4 0.9±0.3 0.0 1.2
160 10 1.2±0.3 −0.6 2.7 1.2±0.3 0.0 2.6 0.8±0.3 −0.2 1.7 0.9±0.2 −0.1 1.3
160 20 1.2±0.4 −0.7 3.0 1.2±0.3 −0.4 2.6 1.7±0.4 0.1 2.4 2.1±0.4 0.1 3.3
160 40 1.1±0.3 −0.6 2.7 1.6±0.4 −0.4 2.8 2.6±0.5 0.3 3.9 2.6±0.5 0.3 3.9
160 80 0.7±0.4 −1.2 2.3 1.6±0.4 −0.4 3.2 2.2±0.5 −0.2 4.0 3.0±0.5 0.5 4.7
160 160 1.0±0.4 −0.8 2.5 1.7±0.4 0.0 3.1 2.6±0.5 0.4 4.0 3.4±0.5 0.6 5.5

Table 2: Exploration of NMA performance versus SNN performance asND, N andK are varied.
The error ranges are 99% confidence intervals in the mean.Ql andQu denote the lower and upper
quartiles, respectively.
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These experiments tested the sensitivity on the approximation parametern and the number of
nodesN. SettingND = 100, Ntrials = 40, varyingN over the values{20,40,80,160}, varying n
over the values{1,5,7,10,12,14}, varyingk over the values{1,2,3,4}, andK ←↩ [1, . . . ,N]. The
compiled results are shown in Table 3. The ranges denote the 99% confidence interval of the mean.
Table 3 shows that for a wide range of sensible values for these three parameters, we pay little

N k n δ (%)

20 1 7 −0.1±0.4
40 1 7 0.0±0.5
80 1 7 1±1

160 1 7 −2±2

40 1 1 2±2
40 1 5 0.3±0.8
40 1 7 0.0±0.5
40 1 10 0.1±0.6
40 1 12 −0.1±0.4
40 1 14 −0.5±0.3

20 1 7 −0.1±0.4
20 2 7 0.2±0.9
20 3 7 1±1
20 4 7 0±1

Table 3: The values ofδ between model averaging overLπ
k and model averaging overLπ

kn(D) as
various parameters are varied.

classification cost by averaging overLπ
kn(D) versusLπ

k . Especially interesting is that the difference is
small even for quite small values of the approximation leveln. Even forn >

∼ 5 the percent remaining
area captured by averaging over the full class is less than 1.1% (i.e., 0.3%+0.80%) with probability
P> 0.99. Also, one might expect the approximation error to increase ask was increased, since for a
fixedn, Lπ

k includes increasingly more structures thanLπ
kn(D) ask increases. Table 3 shows that over

the range ofk considered, there is not much sensitivity in the results tok. These results, although
not comprehensive in scope, support that averaging overLπ

kn(D) does not severely degrade the ROC
area relative to model averaging overLπ

k . This result is important because only overLπ
kn(D) can we

select a single tractable model to do model averaging via standard Bayesiannetwork inference.

4.2.3 AMA VERSUSGTT, NMA AND SNN

In terms of classification accuracy, a more practical test of the benefits ofAMA is to contrast its
performance directly with other algorithms. In our first set of measurementsto test this, we gen-
erated synthetic data and measured the performance of AMA relative to GTT, NMA and SNN. We
variedN over the set{20,40} (much higher was too time-consuming for the complete range of
k andn below), and simultaneously variedND from {100,1000}, k from 2–5,n from 4–14 and
K ←↩ {1, . . . ,N}. In these experiments,Ntrials varied from 50 to∼ 100, depending on the speed
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at which the AMA model could be learned. The results forN = 20 and 40 are shown in Table 4
and 5, respectively. In these and all subsequent tables (except where explicitly stated), the error
ranges represent 99% confidence intervals, andQl andQu denote the lower and upper quartiles,
respectively.

These results illustrate several points. First is that AMA performance is relatively insensitive
to the value ofn. This is an encouraging result, because an approximation network with a large
maximum in-degree can result in slow inference when the feature vector to be classified is not com-
plete andN is large. Next we note the evident complementarity between the naïve classifiers (both
NMA and SNN) versus GTT. The naïve classifiers perform consistently better at lowND; whereas
GTT does better at high values ofND. This effect may be due to the difficulty of reliably extracting
structural information from very small databases; in which case GTT is notable to generalize well.
A final observation about these tables is that for highND, GTT can achieve statistically significant
and large gains compared to AMA whenk is sufficiently small. This effect is more important asN
increases because it becomes more difficult to average overLπ

kn(D) for a fixedk asN is increased.
For example, in our experiments it was too computationally costly for us to repeatedly apply AMA
enough to get statistically significant measurements for (N = 40, k = 5). A similar but weaker ef-
fect is seen for the naïve classifiers. AsN gets large the benefits of AMA appear to lose statistical
significance at lowND; however rarely did the naïve classifiers outperform AMA in a statistically
significant sense.

Figure 4 summarizes the results of Tables 4–5 by showing the qualitative rankings of each
algorithm as various parameters are varied. These rankings were derived by examining the results
in Tables 4–5 and for each classifierCi ∈ {NMA, GTT, SNN }, calculatingδ̄i which is the average
over all values ofn for the particular configuration being considered in Figure 4. The following
rules were applied to determine the rankings:

1. If AMA scored significantly better thanCi for a majority of runs, then AMA is ranked higher
thanCi , and visa-versa.

2. If δ̄i < δ̄ j thenCi is ranked aboveCj .

It is clear from this figure that the quality of AMA classifications depends strongly on bothk and
ND.

While synthetic experiments are attractive because they allow us to systematicallyvary param-
eters and generate enough samples to achieve statistical significance, theydo not necessary reflect
performance in the real world. Also, our synthetic data generation process assumed no hidden vari-
ables, a fact which might bias our results. To this end we tested the four classifiers on 34 data sets
taken from the UCI online database (Blake and Merz, 1998). These results are shown in Table 6.

Here the scoreδi
d for classifierCi was calculated according to Procedure 3, whereM2 = Ci and

M1 was taken to be the maximum scoring classifier for the data setd. For example, in the monks-2
database, AMA was the highest scoring classifier and covered 48% of the remaining area for SNN
and GTT and 21% of the remaining area for NMA. The ROC area will in general depend on which
state of the classification variable is considered to be the “positive" state. The scores in Table 6 are
average scores for all ROC curves associated with a particular classification variable; therefore some
data sets (e.g., wine) have no zero entries when two or more classifiers score highest on different
curves.
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Configuration vs. NMA vs. GTT vs. SNN
ND k n δ (%) Ql Qu δ (%) Ql Qu δ (%) Ql Qu

100 2 4 3±3 -4 7 9±3 0 18 13±3 5 19
100 2 6 6±3 -2 10 9±4 2 16 16±4 5 26
100 2 8 5±3 -2 8 8±3 2 16 14±3 5 20
100 2 10 7±3 -1 13 10±3 2 18 15±4 4 24
100 2 12 5±2 -2 9 11±3 4 18 13±3 6 20
100 2 14 7±3 -1 9 11±4 4 18 16±3 6 24
100 3 4 4±4 -4 10 8±3 2 12 13±4 2 21
100 3 6 6±4 -2 13 12±3 4 17 14±4 6 23
100 3 8 9±4 -2 16 13±3 5 18 19±4 7 27
100 3 10 8±4 -2 17 11±3 3 16 17±4 6 24
100 3 12 7±3 -1 9 10±2 3 14 17±3 6 28
100 3 14 6±4 -3 12 12±3 5 18 15±4 3 22
100 4 4 5±4 -4 14 8±3 2 12 15±4 4 22
100 4 6 5±3 -2 12 9±2 3 15 15±3 6 24
100 4 8 5±4 -2 11 10±3 3 14 13±4 3 23
100 4 10 7±3 -2 13 12±3 3 17 16±3 6 23
100 4 12 4±3 -3 8 9±2 3 14 13±3 4 21
100 4 14 8±4 -1 15 12±3 4 18 17±3 8 27
100 5 6 7±4 -3 16 10±3 3 13 15±4 4 23
100 5 8 5±3 -3 10 10±2 5 13 13±3 3 21
100 5 10 4±4 -2 11 9±3 3 14 12±4 4 20
100 5 12 6±3 -2 10 12±3 4 17 16±3 7 24
100 5 14 6±3 -2 9 10±2 4 15 15±3 6 19

1000 2 4 10±4 -2 18 −8±5 -21 10 17±3 6 26
1000 2 6 11±3 1 19 −12±7 -26 11 19±3 11 27
1000 2 8 10±3 1 17 −15±7 -33 7 17±3 7 24
1000 2 10 12±4 2 23 −8±8 -17 13 20±4 13 30
1000 2 12 10±3 2 18 −10±7 -23 10 16±3 9 23
1000 2 14 10±3 2 18 −7±5 -21 10 18±3 11 23
1000 3 4 14±4 2 23 1±4 -8 9 23±4 11 34
1000 3 6 15±4 2 26 −2±5 -7 9 21±3 11 31
1000 3 8 20±4 6 31 2±4 -6 14 27±4 16 35
1000 3 10 15±3 3 23 0±5 -9 13 21±3 13 28
1000 3 12 18±4 5 29 4±4 -3 14 24±4 13 33
1000 3 14 18±4 4 28 1±4 -3 12 24±3 13 33
1000 4 4 23±5 5 37 6±3 1 12 29±4 15 42
1000 4 6 20±5 2 34 8±3 2 13 29±4 14 41
1000 4 8 24±5 5 40 8±3 2 12 31±4 15 45
1000 4 10 21±4 8 32 6±3 1 15 28±3 18 37
1000 4 12 20±4 8 32 7±2 1 14 27±3 18 37
1000 4 14 25±4 7 37 8±3 1 14 31±4 17 45
1000 5 6 23±4 6 38 9±3 3 15 28±4 16 39
1000 5 8 23±5 6 37 10±3 3 14 29±4 15 42
1000 5 10 26±5 9 40 9±2 3 12 32±4 18 45
1000 5 12 25±4 12 38 10±3 2 16 31±4 20 42
1000 5 14 23±4 8 38 9±3 2 16 28±4 15 42

Table 4: Exploration of AMA performance forN = 20 asND, k andn are varied. Error ranges
denote the 99% confidence intervals;Ql andQu denote the lower and upper quartiles, respectively.
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Configuration vs. NMA vs. GTT vs. SNN
ND k n δ (%) Ql Qu δ (%) Ql Qu δ (%) Ql Qu

100 2 4 1±3 -5 5 6±4 -1 9 5±3 -2 9
100 2 6 3±3 -2 8 5±4 -2 13 6±4 0 13
100 2 8 3±4 -5 10 7±4 -1 10 6±4 -2 15
100 2 10 3±5 -4 4 7±4 1 10 8±5 1 11
100 3 4 1±5 -7 4 6±3 0 6 5±5 -4 8
100 3 6 1±4 -5 5 5±3 -2 9 5±4 -3 10
100 3 8 1±4 -6 4 4±3 -1 9 4±4 -3 9
100 3 10 3±4 -4 7 8±3 1 15 6±4 1 9
100 4 4 −5±5 -10 1 2±4 -3 8 −1±5 -7 5
100 4 6 0±5 -7 7 4±4 -1 6 3±5 -3 6
100 4 8 0±3 -6 5 5±3 0 11 5±4 -1 9
100 4 10 2±5 -4 3 4±2 0 7 6±5 -2 10

1000 2 4 7±4 0 12 −10±8 -21 6 11±4 3 16
1000 2 6 8±4 -1 12 −8±9 -22 7 14±4 5 19
1000 2 8 11±5 1 19 −10±11 -38 13 17±5 8 27
1000 2 10 5±4 -2 11 −15±14 -29 8 11±5 3 20
1000 3 4 14±5 2 26 −3±6 -9 7 19±5 6 29
1000 3 6 19±6 6 30 0±5 -6 7 23±6 11 32
1000 3 8 18±5 7 27 3±6 -4 14 23±4 12 31
1000 3 10 12±5 1 18 0±7 -1 11 18±4 8 25
1000 4 4 19±6 2 29 10±4 2 17 25±5 12 35
1000 4 6 20±5 6 33 6±4 -1 11 25±5 18 35
1000 4 8 18±6 1 28 9±4 3 12 23±5 9 29
1000 4 10 22±6 1 37 8±4 1 12 28±5 13 42

Table 5: Exploration of AMA performance over parameter space forN = 40.
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Figure 4: Qualitative comparison showing the ranking of the four algorithms as the number of
nodes, the number of records andk are varied.
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Data set δSNN δGTT δNMA δAMA N k ND method
haberman 0.35 0.35 0.00 0.00 4 4 306 LOO
servo 0.56 0.66 0.15 0.00 5 5 167 LOO
lenses 0.37 0.45 0.00 0.03 6 6 24 LOO
hayes-roth 0.32 0.32 0.00 0.01 6 6 132 LOO
liver-disorders 0.14 0.07 0.00 0.03 7 7 345 LOO
monks-3 0.83 0.24 0.82 0.00 7 7 552 T&T
monks-1 0.98 0.00 0.98 0.00 7 7 554 T&T
monks-2 0.48 0.48 0.21 0.00 7 7 600 T&T
chess krkopt 0.54 0.00 0.54 0.32 7 7 28055 CV2
ecoli 0.03 0.01 0.02 0.00 8 8 336 LOO
yeast 0.04 0.11 0.04 0.07 8 8 1484 CV2
post-operative 0.08 0.46 0.01 0.09 9 9 90 LOO
prima-indian diab 0.01 0.01 0.01 0.02 9 9 768 CV2
abalone 0.12 0.08 0.05 0.00 9 9 4176 CV2
cpu-performance 0.13 0.31 0.01 0.11 10 10 209 CV2
glass 0.10 0.04 0.15 0.13 10 10 214 CV2
cmc 0.01 0.07 0.01 0.04 10 10 1473 CV2
sol-flare-C 0.03 0.09 0.02 0.01 11 11 322 CV2
sol-flare-M 0.00 0.44 0.17 0.20 11 11 322 CV2
sol-flare-X 0.06 0.01 0.18 0.33 11 11 322 CV2
page-blocks 0.30 0.12 0.23 0.02 11 11 5473 CV2
wine 0.14 0.01 0.16 0.06 14 7 177 CV2
heart-disease 0.00 0.07 0.11 0.19 14 6 294 CV2
housing 0.20 0.06 0.22 0.00 14 5 506 CV2
credit-screening 0.00 0.12 0.09 0.02 16 5 652 CV2
pendigits 0.58 0.00 0.58 0.00 17 6 7495 T&T
letter-recognit 0.38 0.00 0.38 0.01 17 5 20000 T&T
thyroid-disease 0.17 0.28 0.00 0.11 21 5 7200 T&T
soybean-small 0.00 0.00 0.00 0.00 22 4 47 CV4
mushroom 0.86 0.00 0.89 0.03 22 4 8124 CV2
spect 0.18 0.38 0.16 0.00 23 4 267 T&T
brst-canc-wisc 0.28 0.00 0.29 0.23 32 3 569 CV2
connect-4 0.49 0.00 0.49 0.52 43 2 67557 CV2
spambase 0.24 0.25 0.00 0.10 58 2 4600 CV2

Table 6: Experimental results for 34 UCI data sets. The top scoring classifier for each data set is
underlined, the top two are shown in bold. AMA scored in the top one 13 of 34times compared to
7, 12 and 12 for SNN, GTT and NMA, respectively. It scored in the top two 25 times compared to
11, 17, and 19 for NMA, GTT and SNN, respectively.
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The average difference∆i between classifieri and AMA: ∆i ≡ 1
34 ∑d(δAMA

d −δi
d), was calculated

to gauge the statistical significance of these experiments. The results are shown in Table 7. AMA
benefits over the naïve models were significant at the 99% level, but only atthe 95% level for GTT.

i ∆i (%) Ql Qu

SNN 19±5 0 33
NMA 13±5 0 23
GTT 8±4 0 20

Table 7: Compiled UCI results. The error ranges denote the error of the mean.

Finally, the performance of AMA was also tested by generating training and test data with the
benchmark ALARM network. In this case,N = 36 andK = 4 were fixed by the network, and a test
was performed withk= 3,n= 10, andND systematically varied. The results in Table 8 are shown for
classification on thekinked tube (kt)andanaphylaxis (an)diagnostic nodes. Here, for small number

ND δkt (%) Qkt
l Qkt

u δan (%) Qan
l Qan

u

50 32±13 24 55 3±3 -9 17
100 23±11 9 53 1±3 -11 16
200 13±9 -1 32 −3±4 -17 16
400 12±7 -1 34 −3±5 -21 18
800 4±7 -9 23 2±5 -11 21

3200 0±14 -19 15 6±7 -8 19

Table 8: AMA performance v.s. GTT on synthetic data generated using the ALARM network and
classifying onkinked tube(kt) andanaphylaxis(an).

of records, AMA outperformed GTT at the 99% significance level classifying on thekinked tube
node; however, it showed no improvement when classifying on theanaphylaxisnode. These results
are notable because they demonstrate that the qualitative performance of the AMA classifier depends
not just on global network features but also on features specific to the classification node. Precisely
what features of the classification node are important is an open question for future research. The
prior probability ofanaphylaxiswas about 4 times smaller than that ofkinked tube; however, the
local topology of the network may play a factor as well.

Obviously, using AMA was not without cost. The time to construct the models (and memory
requirements) appeared to grow exponentially withk, as shown in Table 9 forN = 40.

5. Discussion

We have shown that, under certain assumptions, it is possible to construct asingle Bayesian network
model,M, whose joint distribution will be identical to exact model averaging over the class,Lπ

k ,
of models consistent with a partial orderingπ and having in-degree bounded byk. Although for
most partial orderings,M will be intractable to build and use for inference, we have demonstrated
two ways of putting this technique to practical use: first, by constructing a single network with a
particular parameterization that produces approximate model averaged predictions, and second by
applying the method to the class of naïve Bayes models, leading to a simple re-parameterization
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ND Algorithm train time test time
AMA-4 330 0.101
AMA-3 27 0.038

100 AMA-2 2.6 0.033
GTT 0.3 0.025
NMA 0.2 0.021
SNN 0.02 0.017

AMA-4 1000 0.113
AMA-3 96 0.035

1000 AMA-2 8.9 0.033
GTT 1.2 0.024
NMA 0.2 0.022
SNN 0.04 0.017

Table 9: Average training and testing times in seconds for the different algorithms with N = 40.
“AMA- m" refers to the average over all runs withk = m.

that produces predictions equivalent to model averaging over all feature sets, effectively solving the
feature selection problem for naïve models in a Bayesian framework.

As an example of the utility of this method, we performed some empirical studies in a classifica-
tion context, and showed that on both synthetic and UCI datasets, even with relatively little effort in
choosing a good value forπ and with simple noninformative priors, classifications can be beneficial
compared to other common BN classifiers. We have also demonstrated empiricallythat classifica-
tions obtained by model averaging over all naïve features sets is very likelyto be beneficial over a
single naïve model chosen by selecting the MAP feature set. It can be expected that these results
would improve in real-world situations when expert knowledge about realistic node-orderings and
structure and parameter priors can be brought to bear.

Our empirical results provide evidence that Bayesian model averaging can improve prediction
over model selection, in contrast to the conclusions drawn by Domingos (2000) that Bayesian learn-
ing exacerbates the over-fitting problem. First, in our experiments with naïve classifiers, model av-
eraging clearly produced better predictions compared to model selection in terms of the ROC area.
Second, in our experiments with approximate model-averaged (AMA) classifiers, we observed the
trend that AMA classifications performed successively better as more andmore structures were in-
cluded in the model averaging (i.e., ask was increased). This conflicts with the assertion that model
generalization suffers when more models are considered in the averagingprocess.

In general, the benefits of AMA were not without cost. Construction times for AMA models
were higher than other model types, and were observed empirically to growexponentially as the
maximum in-degreek increased. Furthermore, when the approximation parametern is large, infer-
ence with incomplete feature vectors can become prohibitive. The latter observation is mitigated
by the fact that the AMA classifier is generally insensitive to the value ofn, allowingn to be mini-
mized without sacrificing classification accuracy. However, in cases where the number of nodes,N,
is very large, the cost of building the AMA classifier might outweigh the benefits: in this case, if the
number of records,ND, is small then a naïve model-averaged (NMA) classifier would probably be

1200



MODEL AVERAGING WITH DISCRETEBNS

the most attractive since it performed comparably to AMA with orders of magnitude faster training
time.

Once the model-averaging model is built, however, the technique has an advantage because of
its simplicity of implementation. Existing systems that use Bayesian network classifiers can trivially
be adapted to use model averaging by replacing their existing model with a single summary model.
This is especially relevant in cases where a naïve classifier is currently being employed, as building
a NMA classifier retains the same linear time and space complexity required for building a naïve
model.

As already stated, whenn is large enough the approximation network can be extremely dense,
thus making inference difficult when the feature-vector is incomplete. One way to get around this
issue, when the incompleteness of the feature-vector is regular, is to learnseparate model-averaging
models on subsets of data in which the same set of features is missing. Thus a one-time investment
of building several feature-vector-specific models would allow us to doO(N) inference even for
largen-values.

Future work includes finding a better method for optimizing the orderingπ, possibly by doing
a search over orderings as in (Friedman and Koller, 2003), and perhaps using cached sufficient
statistics with advanced data structures such as ADTrees (Moore and Lee, 1998) to increase the
practical limits ofk. There are a wealth of other classifiers that it would be interesting to compare
with our approach: both non-probabilistic based models such as C4.5, neural networks, support-
vector machines, etc., and other model-averaging techniques such as those presented in Madigan
and Raftery (1994) and Cerquides (2003)

It should also be possible to relax the assumption of complete training data by using the EM
algorithm or MCMC sampling to estimate parameters from data. Finally, the identification of other
classes of BN models that easily fit within theLπ

k class could lead to other especially efficient
solutions such as that obtained with the naïve Bayes model.
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