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Abstract

A blind separation problem where the sources are not inadlpenbut have variance dependencies
is discussed. For this scenario Hyinen and Hurri (2004) proposed an algorithm which reguire
no assumption on distributions of sources and no paranmatiael of dependencies between com-
ponents. In this paper, we extend the semiparametric approbAmari and Cardoso (1997)
to variance dependencies and study estimating functionblifod separation of such dependent
sources. In particular, we show that many ICA algorithmsagmgicable to the variance-dependent
model as well under mild conditions, although they shoulgrimciple not. Our results indicate
that separation can be done based only on normalized sowtiels are adjusted to have station-
ary variances and is not affected by the dependent actisityls. We also study the asymptotic
distribution of the quasi maximum likelihood method and stebility of the natural gradient learn-
ing in detail. Simulation results of artificial and realiséxamples match well with our theoretical

findings.

Keywords: blind source separation, variance dependencies, indeperdmponent analysis,
semiparametric statistical models, estimating functions

1. Introduction

Blind methods of source separation have been successfully applied toamasyof science

(e.g. Hywarinen et al., 2001b; Olshausen and Field, 1996; Makeig et al., 1993yi¥jgl997;
Ziehe et al., 2000; Thi and Jutten, 1995; Cardoso, 1998a; Parr&mante, 2000; Cardoso, 2003;
Meinecke et al., 2005). The basic model assumes that the observets sigmdinear superpo-
sitions of underlying hidden source signals. Let us denotentlseurce signals by the vector
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KAWANABE AND MULLER

s(t) = (sy(t),...,s(t)) ", and the observed signals Bt) = (x;(t),...,xm(t)) . In this papet,
we will focus on real-valued signals. The mixing can be expressed asjtiatien

X(t) = As(t),

whereA = (&) denotes the mixing matrix. For simplicity, we consider the case where the number
of source signals equals that of observed sigmats (n). Both the sources(t) and the mixing
matrix A are unknown, and the goal is to estimate them based on the obsex(ajiafone.

In most blind source separation (BSS) methods, the source signalssaraegbto be statisti-
cally independent. Blind source separation based on such a model isindipendent component
analysis (ICA). By using non-Gaussianity of the sources, the mixing madnxbe estimated and
the source signals can be extracted under appropriate conditiong dreeslso further approaches
of BSS, that are, for example, based on second-order statistics amithatgs exploiting nonstation-
arity. The second-order methods are applicable to the case where the smnals have (lagged)
auto-correlation. Provided that components have nonstationary, smobdmging variances, the
model can be estimated as well by algorithms based on nonstationarity of signals

Among many extensions of the basic ICA models, several researchersshalied the case
where the source signals are not independent (for example, Cald@®8b; Hyarinen et al., 2001a;
Bach and Jordan, 2002; Valpola et al., 2003, see also referencgsémiien and Hurri, 2004). The
dependencies either need to be exactly known beforehand, or theyrataneously estimated by
the algorithms. Recently, a novel idea called double-blind approach waducid by Hy@rinen
and Hurri (2004). In contrast to previous work, their method requiceassumption on the distri-
butions of the sources and no parametric model of the dependenciegbhéh@eomponents. They
simply assume that the sources are dependent only through their varé@amtthat the sources have
temporal correlation. In the Topographic ICA (Hynnen et al., 2001a), the dependencies of the
sources are also caused only by their variances, but in contrast totléedlind case, they are
determined by a prefixed neighborhood relation. It should be notedahsti€th dependent compo-
nent models identifiability results have not been theoretically established sdfke identifiability
of multidimensional ICA was proven by Theis (2004).

A statistical basis of ICA was established by Amari and Cardoso (199i8y pointed out that
the ICA model is an example of semiparametric statistical models (Bickel et aB; 2@8ari and
Kawanabe, 1997a,b) and studied estimating functions for it. In particuégrstiowed that the quasi
maximum likelihood (QML) estimation and the natural gradient learning giverctsolution re-
gardless of the true source densities which satisfy certain mild conditiotisisIpaper, we extend
their approach to the BSS problem considered in&tinen and Hurri (2004). Investigating esti-
mating functions for the model, we show that many of ICA algorithms based dndeeendence
assumption can achieve consistent solutions in a local sense, even iExtigtreariance depen-
dencies, which is astonishing and seems somewhat counterintuitive. Wekrdratiestimating
functions are concerned with local consistency ('consistency’ willotietits local version in the
following) and in general have spurious solutions. For a few algorithres global consistency
has been proven by different principles (for example, &yven and Hurri, 2004). Nevertheless,
our result goes beyond existing ones, because it covers most tyB&Sadlgorithms and can give
asymptotic distributions. The main message of this paper is that most ICA algodémire proven
to be consistent in our framewodtthoughthe data isnotindependent. So they must effectively

1. This is an extended version of Kawanabe aridi&t (2004) presented at ICA2004.
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ESTIMATING FUNCTIONS FORVARIANCE-DEPENDENTBSS

use some concept beyond independence. Thus our consistenity irdicate that separation can
be done based only on normalized sources which are adjusted to haveastatiariances and is
not affected by the dependent activity levels.

This paper is organized as follows. At first, we define the variancestignt model in Section
2 and explain estimating functions, a useful tool for discussing semipaiamstimators in Section
3. In Section 4, we discuss the relation between estimating functions for thentitlel and those
for the variance-dependent BSS model in general. It is shown tha ghgsrithms work properly,
even ifthere exist spatiotemporal variance dependencies. Among severaldGAthms, the quasi
maximum likelihood method and its online version, the natural gradient learnindiscussed in
detail. We study the asymptotic distributions of the quasi maximum likelihood mettrexdi¢s
5.1) and the stability of the natural gradient learning (Section 5.2). We alsadorief summary
about several other ICA algorithms from our viewpoint in Section 5.3. ietaliscussion can
be found in Appendix A. The theoretical insights are underlined by aéweimerical simulations
in Section 6. In particular, we carried out two experiments, where weaxit® speech signals
with high variance dependencies. It is sometimes believed that ICA algoritlomksfar mixture of
acoustic signals or natural images because the data are sparse ardispfiah Our results show
that they can also separate even highly coherent signals, and ougttbaloanalysis can thus help
to understand the reason.

2. Variance-Dependent BSS Model

Hyvarinen and Hurri (2004) formalized the probabilistic framework of vargadependent blind
separation. Let us assume that each source sgals a product of non-negative activity level
vi(t) and underlying i.i.d. signa (t), that is,

s(t) =vi(t)z(t). )

We remark that the sequences of the vecterssy,...,S) ', V= (Vq,...,Vn) | andz=(z,...,z,)"
are considered as multivariate random processes in this paper. tic@radge activity level;(t)
are often dependent among different signals and each observetlisigrpressed as

Xi(t):iaijj(t)Zj(t), i=1,...,n,
=1

wherev;(t) andz(t) satisfy:
(i) vi(t) andz;(t") are independent for al j, t andt’,
(ii) eachz(t) is i.i.d. in time for alli, the random vecta= (z,...,z,)" is mutually independent,
(i) z(t) have zero mean and unit variance foriall

No assumption on the distribution Bfis made except (iii). Regarding the general activity leveés
vi(t) andvj(t) are allowed to be statistically dependent, and furthermore, no particulampten
on these dependencies is made (double blind situation). We refer to thisvoakes the variance-
dependent BSS model in this paper. Figure 1 shows an example of tlressused in the model.
As stated in the assumption (ii) above, the normalized signadsidz, are mutually independent.
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el = OLOX O iy

source(St, ) activity level (vq, Vo) normalized signa(z;, )

Figure 1: Sourceés;,s;) with variance dependencies in the variance-dependent BSS model. In the
middle panels botk; and—v; are plotted for clarity.

However, since the sequenasandz are multiplied by extremely dependent activity level@nd
Vi, respectively, the short-term variance of the source signalads, are highly correlated.
Hyvarinen and Hurri (2004) proposed an algorithm which maximizes the olgdctnction

JW) =y [eov([w u(t)]?, [wj u(t — At)}%) ]2,
I:)

wherecov denotes the sample covariandé= (wi,...,w,)' is constrained to be orthogonal and
whereu(t) is obtained by preprocessing the sigrél) by spatial whitening. It was proved that
the objective functiold is maximized wheWA equals a signed permutation matrix, if the matrix
K=(Kijj) = (cov{az(t),sjz(t —At) }) is of full rank. This method shows good performance as long
as there exist temporal variance dependencies and the data is not syailetliers (see Meinecke
et al., 2004).

It is important to remark that the nonstationary algorithm by Pham and Gaf@@0) was
also designed for the same source model (1), excepvtftgis are assumed to be deterministic and
slowly varying. However, it is straightforward to show validity of this algamithwhenv;(t)’s are
(slowly-varying) random sequences.

3. Semiparametric Statistical Models and Estimating Functios

Amari and Cardoso (1997) established a statistical basis of the ICA pnobleey pointed out that
the standard ICA model
T n

_ T U
P(X|B,ps) = | detB| ﬂﬂ ps{bi x(t)} (2)

is an example of semiparametric statistical models (Bickel et al., 1993; AmarKan@nabe,
1997a,b), wherdB = (by,...,by)" = A1 is the demixing matrix to be estimated apg(s) =

n
N ps(s) is the density of the sourcess Notations used in the following sections are also sum-
i=1

marized in Table 1. As the functiops in this model, semiparametric statistical models contain
infinite dimensional or functional nuisance parameters which are difficidstionate. Moreover,
they even disturb inference on parameters of interest.

2. Since the sources are assumed to be i.i.d. in time, people considasttitaution of one sampl& instead of the
entire sequencx.
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X(t) = (X1 (t),..., % (t)) T observed data at

X =(x(1),...,x(T)) whole sequence of the observed data

S(t) = (st(t),...,.Xa(t)) " source signals at

v(t) = (vi(t),...,va(t)) " general activity levels of the sourcg$)

V=(v(1),...,v(T)) whole sequence of the activity levels

z(t) = (z1(t),...,za(t)) T normalized source signals by the activity leve(s)

A n x N mixing matrix

B=(bjj) = (by,...,bn) " demixing matrix which is equivalent &1

Pz(2) = iIEI Pz(z) density of the normalized source signals

pv(V) density of the entire sequen¥e= (v(1),...,v(T))
of the activity levels

y(t) = Bx(t) extracted sources by the demixing maix

F(x,B) or F(X,B) estimating function which is anx n matrix-valued

function of the data and the paramefBer
vedF) vectorization operator

:(F117'"7Fn17"'7F1ﬂ7"'1an)T

Table 1: List of notations used in the variance-dependent BSS model

In the variance-dependent BSS model which we consider, the saft¢ese decomposed of
two components, the normalized signals) = (z(t),...,z,(t))" and the general activity levels
V(t) = (vi(t),...,Vn(t))". Since the former has mutual independence like the ICA model, the den-
sity of the dataX is factorized as

T n T
PV 0 = el [] ] g P { WO } | ®

whenV = (v(1),...,v(T)) is fixed. Therefore, the marginal distribution can be expressed as

P(X|B, pz,pv) :/p(XIV:B, Pz)pv(V)aV, (4)

where the densitpy of V becomes an extra nuisance function.

In order to construct valid estimators for such semiparametric models, estirhatoipns were
introduced by Godambe (1976). Let us consider a general semipai@amettel p(x|0,p), where
8 is anr-dimensional parameter of interest gmis a nuisance parameter. Ardimensional vector
valued functionf (x,0) is called an estimating function, when it satisfies the following conditions
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for any@ andp (Godambe, 1991),

E[f(x,8) [6,p] =
|detQ| # 0, whereQ=E [ aaef(x, 0) 'ejp],
E[|If(x0)] .| < oo,

where H:|0,p] denotes the expectation ovewith the densityp(x|6,p) and|| - || is the Euclidean
norm. Suppose i.i.d. samplesl),...,x(T) are obtained from the mode(x|6*,p*). If such a
function exists, by solving the estimating equation

Zf t),0) = (5)

we can get an estimat6rwith good asymptotic property. Such an estimator that is a solution of an
estimating equation as (5) is called an M-estimator in statistics (Huber, 198dgn ke regarded

as an extension of the maximum likelihood method for parametric models. Theindaes 8 is
consistent regardless of the true nuisance paranpéterhen the sample siZ€ goes to infinity.
Moreover, it is asymptotically Gaussian distributed, thabis; N(6*,Av), where Av denotes the
asymptotic variance computed by the following equation

Av = Av(8",p") = %Qfl E [ £(x,0) f7(x,0)

o7 @Y,

andQ=Q(0*,p*)=E { % f(x,0) | 0", p*} . We remark that the asymptotic variance Av depends on

the true parameter®*,p*), but not on the dat&(1),...,x(T). As we will explain in Section 4.2,
notions of estimating functions and M-estimators were extended to non i.i.d cases

Although estimating functions are useful for semiparametric models, it is noakto find such
functions. Amari and Kawanabe (1997a,b) studied this problem fronomgtical point of view
and gave a guideline for discussing estimating functions. R

The asymptotic result guarantees theoretically that the estirBaterived from the estimating
function converges to the true parame®runder mild conditions. However, we should remark
that the asymptotic variance Av of the estimator depends on the true nuisarscegtep*. For
example, when the matrigQ is almost singular ap*, it can happen that the asymptotic variance
Av becomes very large. This may cause some practical problem, that isstth@ate from finite
samples can be no longer close to the true parameter. We will revisit this isSeetion 6.

Furthermore, online algorithms with similar consistency property can alsoristracted from
estimating functions,

9t+1 = Bt—r]tf(x(t),et), (6)
Brr = 6 —NeR(6G) F(x(1),6), (7)

whereR(0) is ann x n nonsingular matrix and depends only &nWe remark that the functions
f(x,0) andR(0) f(x,8) give the same estimating equationRif0) has the inverse matrix and does
not depend on the daka Such functions are called equivalent estimating functions. It is alsaeasy
see that the online algorithms (6) and (7) have the same equilibria points.velgwheir dynamics
are different. The stability of such online learning was investigated by Aetadi (1997).
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4. General Properties of Estimating Functions for Blind Sepaation

In this section we will at first review estimating functions for the ICA model §&g(also Amari and
Cardoso, 1997; Cardoso, 1997) and then discuss our contributatnisthby defining estimating
functions for the variance-dependent BSS model (3) and (4).

4.1 Estimating Functions for Ordinary Blind Source Separation

In case of the ICA model, the parameter of interest isitlen matrix B= A~! and hence it is con-
venient to write the estimating functionsrink n matrix formF (x,B). The conditions of estimating
functions are reshaped accordingly as

E[F(x,B) [B,ps] =0, (8)
_ [ ovec{F(x,B)}

|detQ| # 0, whereQ=E [ TC(B) ‘ B, S} , 9

E[|IF(x,B)| |B,ps] <, (10)

where ve¢F) = (Fi1,...,Fn1,-.-,Fin,...,Fan) | is the vectorization of matrices arid || denotes
Frobenius norm. It should be noted that both in usual ICA models and inattienee-dependent
BSS model, scales and orders of the sources cannot be determinésl, tthatmatriced8 andPDB
indicate the same distribution, whé&wandD are a permutation and a diagonal matrix respectively
(Comon, 1994%. Therefore, we can find any matrix in the equivalence class, so for nodtio
convenience we will fix scales as the constraints (25) fater.

One of the standard ICA algorithms originates from maximum likelihood estimatibitivis
asymptotically the best method if the dengityis known. Because in the semiparametric mquel
is unknown and difficult to estimate, the idea is to use instead the maximum likelilstiota&on
under a prefixed densifys. The method is called the quasi maximum likelihood estimation, since
the fixedps does not coincide with the true one. The estim&as derived from the equation

T
I —d{yt)}y' (t)| =0, 11
PRIORYC (11)

wherey(t) = Bx(t) is the estimator of the sourcals(y) = (¢1(y1),...,dn(yn))" and

di(yi) = —diwlogﬁs (Vi)

For the nonlinear functiot;(y;),

di(yi)) = tanfcy),  ¢>0, (12)
oiy) = ¥, (13)
are often employed. The functidi(x,B) = | —${Bx}(Bx)" in (11) is an example of estimating

functions for the ICA model, provided that it satisfies (9) and (10). Itivgairto show that it fulfills
(8). Another example is the function

F(x,B) =Bx(Bx) —I+(Bx) g' (Bx)—g(BXx) (Bx)"

3. ltis clear that the variance-dependent BSS model has at leashsieterminacy. On the other hand, the identifiability
in this case has not been proved so far.
4. We ignore the permutation indetermindgysince it's locally not problematic.
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for FastICA (see (37) in Appendix A.1), whegg-) is a vector valued non-linear function ¢¢).
We remark that this procedure can also be derived from minimum mutuamatan (Yang and
Amari, 1997) and infomax principle (Bell and Sejnowski, 1995).

In general the quasi maximum likelihood estimator is no longer consistenus®ch misspec-
ified distribution. However, in the ICA model (2), Amari and Cardoso @)9®und that the quasi
maximum likelihood method and its online version (the natural gradient learging)an asymp-
totically consistent estimator, provided tHatx,B) = | — ¢{Bx}(Bx) " satisfies (9) and (10). In
particular, we remark that the assumed distribupgis not equal to the true one. This research has
motivated us to investigate also such semiparametric procedures for theceadaependent BSS
model (3) and (4). In particular, we will show in Section 5.1 that the quasimmam likelihood
method (11) still gives a consistent estimator even under this extended situatio

4.2 Estimating Functions for Variance-Dependent Blind Source Sepation

In the variance-dependent BSS model, in contrast to the ICA model stogiachari and Cardoso
(1997), the data sequende= (x(1),...,x(T)) is not i.i.d. in time, but might have time depen-
dencies. Therefore, we have to consider more general fund&ipisB) of the whole sequenck.

General estimating functiorts(X, B) must satisfy

E[F(Xv B) |Ba pZ7pV] =0, _ (14)
_ [ ovec{F(X,B)}

|detQ| # 0, whereQ =E [ TC(B) ’ B, Pz PV] , (15)

E[IF(X,B)|[Z |B,pzpv] <o, (16)

for all (B,pz,pv). An M-estimatorB can be derived from the estimating equation
F(X,B)=0. (17)

Suppose that the da¥ais subject top(X|B*, p3,py;) defined by (3) and (4).

Theorem 1 If the functionF (X, B) satisfies the conditions (14) — (1AG) and appropriate regularity
conditions such as Condition 2.6 in Sgrensen (1999), the M-estirBaferived from the equation

A~

(17) is asymptotically Gaussian distributedd B) ~ N(veqB*),Av), where

A = AV(Bp5py) = QZ(@QYT, (18)
2 = 3(Bp5) = E|vecF(X,B")}vec(F(X,B")} "B, p}.p(]

ovec{F(X,B*)}

Q = Qe - E| MO0

B*,pé,p@]-

Proof See Sgrensen (1999).

Now, we investigate the relation between estimating functions for the ICA modath@se for
the variance-dependent BSS model. E¢k,B) be an estimating function for the ICA model. In
the ICA context it is often the case that such estimating functions satisfy

E[FRj(x,DB) [B,ps] =0,  i#], (19)
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for any diagonal matriD, that is, its off-diagonal parts (19) hold for all matrices equivaler®.to
The scale factob is determined usually by the diagonal parts of condition (8)

E[Fi(x,B) [B,ps| =0,

in the ordinary ICA model. We will soon present the equation for fixing traestactorD in the
variance-dependent BSS model.
Let us consider the function

F(X,B) = iF(x(t),B), (20)
t=

which is used in estimating equations for the ICA mot#Ve can show that this function becomes
a candidate of estimating functions for the variance-dependent BSS model.

Proposition 2 The functiorf (X, B) defined in (20) satisfies condition (14), provided th&tB) is
an estimating function for the ICA model and fulfills (19). Furthermore, if tidittonal assumption

E[IF(X(t),B)|Z |B,pzpv] <o, W (1)

holds, condition (16) is also satisfied.

Proof Taking expectations of the off-diagonal terms of (14), we get

.
E[FRj(X,DB) |B,pzpv] = E[ZLE[FIJ'(X(U’DB) |V:B,p,]
t=

o]
.
— E| S E[F(x(t),DB) |B,pgy

[t; [ Fij(x(t),DB) | p(t)}‘PV]

wherepg) is the density function of(t) when its activity level is fixed at(t), that is,

ps\v(t)(s) = il_ﬂl Wlt) Pz {%} ’

We remark that the expectationi/; B, p;] ( E[-|B, pgv)] ) is taken ovee(t) (resp.s(t)) under fixed
activity levelsV, while E[-|py| denotes the expectation over the activity leveBecause (19) holds
for anyps, we can prove

E [ I:Ij (Xa DB) ‘ Ba pZa pV] = 07
for all diagonal matrice®. If we select the scale fact@ such that the diagonal terms

hold, F satisfies the unbiasedness condition (14). We furthermore note thatdlirmss different
from that in the ICA model presented before, and the expectat{d'ﬁi &(t),B) | B, pth)] at each
timet can be non-zero in general.

5. We remark that some of ICA/BSS algorithms (for example, TDSEPIE&B not based on estimating functions in
this class. Because it is not easy to discuss them in such a generaMferdeal with other classes separately in
Appendix A.

461



KAWANABE AND MULLER

The left hand side of Eq. (16) can be expressed as
E[|F(X,B)[? |B,pzpv]

_ [ZE[U{F (t),B)F ((t’)7B)}‘V;B’pZ} pv]
- [ZE H B)H'Z: ‘B’ps\v(t)] ’p\/}

;/ ZlE i ( B) |B, Pgv(t ] [FII (X(t/)vB) ‘B? pS\V(t')]

m] ; (22)

where we used the fact thaft) andx(t’) (t #t') are independent for fixed. From assumption
(21), the first term of Eq. (22) is finite.

% E[ELIF (). Bl [B.pao] [pv]

ZE IF( (t),B)IIEIB,pz,pvkoo (23)

We remark that condition (10) does not necessarily imply assumption (i ud define
o(v(t)) == E [ |IF(x(t),B) |2 | B, pgy)]. Since

[E[Fi(x(t).B) [B.psy] | < /E[F2(x(0),B) | B.payy] < V(WD)

the second term of Eq. (22) (calledn the following) can be bounded as

o< nSE [ VeMD)Veu(t)) | pv]

< of 3 VETG@ 0}
< HTZE[C(V(I)) pv]

Here we used Schwarz’'s inequality twice. Because of Eq. (23), thisdisLalso finite. 0

The basic idea of this proof is that the situation becomes similar to the ordinAryniaiel, if
the activity levelsV are fixed. Unfortunately, the other conditions are difficult to be provehim
general form. For example, the second condition can be transformedsimthiar way as

avec{F(X,B)}
[ oveqB)

B, pz,pv]
ZE[ [avecé{FeO((B)) B)} ‘B,psv(t)} 'pv] (24)
dvec(F

Even if each term %WB} ‘B Psivt )] is non-singular, it may still be possible that the sum
(24) becomes singular. However this is in practice an extremely rare case.
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5. Consistency Results for Variance Dependent Blind Sourceeparation Using the
Estimating Function Framework

We will use the estimating function framework to prove consistency resuli§)ftre quasi max-
imum likelihood type methods (for example, Pham and Garrat, 1997; Bell eymb@ski, 1995),
(i) the natural gradient learning for ICA (for example, Amari, 1998) &éiiglvarious other ICA al-
gorithms such as FastICA (Hgvinen and Oja, 1997), TDSEP/SOBI (Ziehe andllr, 1998; Be-
louchrani et al., 1997), 'Sepagaus’ (Pham and Cardoso, 2000)4DE (Cardoso and Souloumiac,
1993).

5.1 Asymptotic Distribution of the Quasi Maximum Likelihood Estimator

In this section, it is shown that the quasi maximum likelihood method (11) agéongle Pham and
Garrat (1997); Bell and Sejnowski (1995) still gives a consistetitna@sor even under the extended
model (3) and (4). For convenience, we fix the scales of the reabgégeals as

£ [ im{brx(t)}b?x(t)

87 pZa p\/] = T7 (25)

fori=1,...,n. Then (14) is automatically fulfilled for the diagonal terms. We remark that isy th
constraints the length dfi's may depend on the nuisance parameferspy ), but this does not
change the following discussion, because the scales can be fixedrdybitra

Since the functiorF (x,B) = | — ${Bx}(Bx)" obviously satisfies (19), we already know from
Theorem 2 that the function

_ T
FM B =y [1=otyy'® |

satisfies the conditions (14) and (16) under the assumption

E[0?{yi(0)}V2(M) |B.pzpv] <, Vi, j,t, (26)

wherey(t) denotes the extracted sourdegt). The additional assumption imposes mild restriction
on the distribution of the activity level. For example, when the density has extremely heavy
tails, the left hand side of Eg. (16) becomes infinite, even if condition (1@)lfidled. Thus, we
need assumptions like (26) to exclude such unusual cases.

For better understanding, we directly analyze the off-diagonal ternisiyf (

.
E [ Zl(bi{yi O}y

= ZE [0 w2} vi(Oz(1) |V;B.pe] [pv]

Bv va pV]

= t; [E[¢i{vi)z(t)} |V;B,pJ E[Vvj()z;(t) |V;B,p] |pv] =

The second equality follows from the fact ttiatindz; are independent for fixed.

6. This unbiasedness in fact holds under a wider conditisrts;(-), j #i] =
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To prove condition (15) and compute the asymptotic variance (18), welatdhen? x n?
matrix Q. If we use the non-holonomic basig & dBB~1 (Amari et al., 2000)Q is expressed as

dveq(FQML) —
=E|— B B
Q |: avec(x) ‘ 7pZapV:| )
— — - . ve( FML)
whereB = (Bjj.«) andBjj.x = dibyj. Fortunately, the matrix %"W} turns out to have a
simple structure such that only the following?2- n components are non-zero,
E = =Y Em{v)}]-T,
x| T R EIm )]
QEQML QEQML
E|— E|— T
[ axi,- ] [ 6in ] B tzlE[ki{Vi (t)}vjz(t)] T
—QML —QML - T
e | %Fi e | %Fi T Z B[k {vi (O} ()]
OXij oxi -

in which we employed the following quantities
ki{vit)} = E[di{vi(t)z(t)}[V:B,p,
m{vi(t)} = V() E[oi{v(t)zt)}F () [V:B,ps,

andd; is the derivative oh;. Hence, it is not difficult to check non-singularity of this matrix, and if
this is the case, the condition (15) holds. We can also explicitly calculate theséwetrix

_ B ~1
Q=8B (E [%D that appears in the asymptotic variance (18), because we only have to
invert the 2x 2 matrices.

Finally, the variance of the estimating function can be computed as

E [IE?MLF_I((IQML‘B’ 0z, pv]
t’ZtCOV[tbi{Yi O}Yi(0), o @)Iw(t)], i=], k=]
— ZE[¢i{Yi(t)}¢k{yk(t)}y12(t)] ; j=1i#jork#l
ZE[¢i{yi(t)}yi(t)¢j{Yj(t)}Yj(t)]a =1, j=ki#]

which is slightly more complicated than the standard ICA model. Summing up the siiscabove,
we get the following theorem.

Theorem 3 Suppose that the conditions
T
ZE[m{vi(t)}HT#Q Vi, (27)
t=

3 Elk{w( ()] T o
det| =1 - #0, Vi # |, (28)
T 2 Elk (v (O} (1)]
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and assumption (26) hold. Then the funct®V-(X,B) satisfies the conditions (14) — (16) and
becomes an estimating function. In that case, the quasi maximum likelilstiothtor BRML de-
rived from the equatiofr @Y-(X,BRML) = 0 is consistent regardless of the true nuisance functions
(p3,py) under appropriate regularity conditions.

5.2 Stability of the Natural Gradient Learning

In neural networks and machine learning, online leaning is often peeféorbatch learning because
of computational efficiency, less memory and adaptability (see, for exaMiplier et al., 1998;
Murata et al., 2002). The natural gradient learning (Amari, 1998)

B(t+1) =B(t)+n(t) || —o{y®)}y" (1)| B(Y), (29)

is an online algorithm based on the quasi maximum likelihood method, wtitgre B(t)x(t) is the
current estimator of the sources and) is an appropriate learning constant.

Following the discussion in Amari et al. (1997), we will study the stability of theural gra-
dient learning for the variance-dependent BSS model. For the salmplicity, they analyzed a
continuous version of the algorithm (29)

B(t) = ) [1 - 6y} (©)] BO), (30)

whereB(t) denotes time derivative of the matri(t), u(t) = n(t)/t andt means the sampling
period. Suppose that the marginal distributions of the activity lev@lsare identical in time.
For example, when the sequen¢es generated from an AR process, this holds approximately
after it reaches the equilibrium distribution. Although the random varialfles (activity levels)
have an identical marginal distribution in time, their realization can fluctuate tiramto time and
weak nonstationary structures can be found in the observed signdtsitwrately, it is difficult to
eliminate this rather strong assumption. If we apply the online algorithm (29)téovdéh highly
nonstationary variances like speech, the scale factor of the demixing rBatinaxnges substantially
from time to time and never converges. This makes the current stability anmhymissible. It
might be possible to discuss these cases by considering only the eqoévalass, but it is out of
the scope of the current paper.

In order to fix the scales of the sources, we impose constraints

E [q)i{biTx(t)} biTx(t)] -1, Vi (31)

Note that the marginal distribution &ft) is identical in timet and the equilibrium pointBy of the
equation (30) satisfy
E[1-o{yo®}5 1) =0, (32)

wherey,(t) = Box(t). With a similar calculation as in Section 5.1, we can show that the function

FNe(x.B) =1—-d(y)y"

satisfies the unbiasedness condition (8) of estimating functions. This mesaisehrue demixing
matrix B* satisfies the equilibrium equation (32), thatBs, becomes an equilibrium point of the
flow (30). However, it does not guaranteed tBét) converges t@* even locally.
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Let us fix the stochastic procegs= {v(t), t > 0} of the activity levels at first and consider the
conditional expected version of the learning equation

B(t) = W) E[ 1 - o{y®)}y"®) | V] Bt
By linearizing it at the equilibrium poirB*, we have the variational equation

vec(aB(t)} = u(t) LeLE [FN;ZQQ’)B*) VB ecramit)).

wheredB(t) is a small perturbation. Therefore, we have to check the eigenvalues op#rators

NG 5 *
Oved E[Favéﬁg)’B ) vV]E'} for eacht > 0. If all eigenvalues have negative real parts, then the equilib-

rium B* is asymptotically stable for the fixed activity leva&ls Since the matrix can be expressed
as

dvec{ E[ FNS(x(t),B*) |[V] B} - dvec(E[FN®|V])

-1
dvedB) B aveq) (B (33)
whereB* = (_i*j;kl) = (3ikhy; ), and derivative w.r.ty corresponds to the non-holonomic basis
dx = dBB~L. Because the left hand side of (33) is a similar transformatiof’ \',EGEF:‘(GM), their
eigenvalues are the same. Fortunately, as is the case of the quasi maxinilmadikehe matrix
%ﬁ(;‘;\\/]) has a simple structure such that only the followimg 2 n components are non-zero,
OE[RN|V]
—1—— = —mi{v(t)}-1
aXu m{ l( )}
OE[FYCIV]  9E[FYC|V]
aXIJ ani _ _< ki{Vi(t)}VJZ(t) 1 )
OE[F°|V]  OE[F{\C|V] 1 ki{viO}vr(t)
0Xij oXji
Therefore, the matn% at timet has eigenvalues only with negative real parts, if and
only if
m{v(t)} +1>0 (34)
ki{vi(t)} >0 (35)
VOO k{viO)} kifvit)} > 1 (36)
foralli, j(i#j).

Theorem 4 If the stochastic process ¥ {v(t), t > 0} of the activity levels satisfies the conditions
(34) — (36) with probabilityl as for the true parameteiB*, p;, py ), then the true demixing matrix
B* becomes an asymptotically stable equilibrium of the flow (30) with probalility

Although asymptotic stability could be proved under weaker conditions, wersuize the
discussion as Theorem 4 for simplicity. In order to understand the restifirbwe revisit the
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examples presented in Amari et al. (1997). The conditions turn out to bk hawder than those by
Amari et al. (1997) because of the fluctuating activity levels.

Example 1.Let us consider the following odd activation function
i(yi) = |vil sign(y)
for p=1,2,.... The conditions (34) and (35) are automatically satisfied for any fixed> 0.
m{v(t)} = pW M E[z®)"] >0
k{w®} = pW O E[lz0)"*] >0
The condition (36) becomes
PPV OV E[l20)PY E[lz 0P > 1

By introducing Gray’s norm
Voi = E[|z [P+
=
P Ellz2El[zPY

-1
and taking notice of the normalization constraints (31), that|ig;|2™] = (E[vipH]) , finally we
obtain

min v (t) min )

ENVTY BV

For the cubic functiom;(y;) = y2, not as in the ICA model, the condition that all signals are sub-
Gaussian

YpiYpj < P?

E[|z]*
o= ELEL
(E[1z[%)
is not enough, but the variation of activity levejdrom (1) should be taken into account.

Example 2. Let us consider a symmetrical sigmoidal function

¢i(yi) = tanh(By; ).

The conditions (34) and (35) can be checked easily. Unfortunatelyjsrcéise we can only do a
rather coarse analysis as follows. Let us assfirzel so that the approximation

)~ v L3 2 (pyaS
bi(yi) ~ Byi 3(BY|) + 15(BY|)
holds with high probability. Then, we can express the condition (36) as

B E |1 (By) + o (B’

EER AR

V} > 1.
Because 1-t2+2t*/3 > t4/3, we get a stronger condition

BlO

5 OV E[VIV] E[y{[V] > 1.
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From a rough approximation of (31), the relati®r: (E[viz])f1 is derived. Therefore, if all approx-
imations are accurate enough, we finally get a sufficient condition ofli{&6)

3
E[v2] E[vjz]

g4 | minv? minv?
t t

Y3iY3j >

In contrast to the ordinal ICA model without variance dependence ahéition that all signals are
super-Gaussian may not be enough, but each kuggsiiould be much larger than’3.

5.3 Properties of Other BSS Algorithms

Although we concentrated on estimating functions of the form (20), we eahvath more general
functions and investigate other ICA algorithms within the framework of estimatingtions and
asymptotic estimating functions (see also Cardoso, 1997). Such analijmstthveheck whether
these algorithms may give valid solutions regardless of the nuisance defigitipg). We re-
mark that our extension enables us to analyze algorithms based on tentpataire such as TD-
SEP/SOBI (Ziehe and Mler, 1998; Belouchrani et al., 1997). Since it is quite technical, the de-
tailed discussion is put in Appendix A, where the unbiasedness condi#ro{estimating func-
tions is examined for these algorithms under the variance-dependent B&® mée briefly sum-
marize the consequences in Table 2. Estimators by all algorithms listed belaerared from
estimating equations which satisfy the unbiasedness condition at least asgatigtoWhen the
other conditions are taken into account, TDSEP/SOBI never works fovatfience-dependent BSS
model, because sources have no lagged auto-correlations. ICA alg®uising non-Gaussianity
such as FastICA and JADE are not working, if sources are Gaussi@ndouble blind algorithm
(Hyvarinen and Hurri, 2004) cannot be applied to the case where the vastmictures of sources
are the same or there is no temporal variance-dependency. The nomstaatgorithm by Pham
and Cardoso (2000) is not applicable to the case where time coursesauitithgy levels are pro-
portional to each other. Of course, such a theoretical analysis tellslyalmout the possibility of
failure. In practice, algorithms do not always return valid answersaumse of local minima and
numerical instability of their learning process. Nevertheless, this thedrafiedysis can explain
the results of our numerical experiments in the next section.

6. Numerical Experiments

We carried out experiments with several artificial and more realistic datdsetsveral BSS al-
gorithms. The eight batch algorithms and the online versions of the quasi maxiikelihood
methods listed in Table 3 were applied to those data sets. Note that our goalpisnarily an
algorithm comparison but the experiments serve to demonstrate the cosseofreur theoretical
analysis.

For evaluating the results, we used the index defined by Amari et al. Y1996

i o _ < [ 2=lGil O f G|
smaringex®.A) = 5 { 2o -1h+ 5 { Zoudli -}

7. This different result corrects a calculation in Amari et al. (1997).
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| algorithm | unbiasedness| unavailable cases

FastICA yes Sources are Gaussian.
Hyvarinen (1999)

double blind asymptotically| Variance structures are same or
Hyvarinen and Hurri (2004) there is no temporal variance-dependency.

JADE asymptotically| Sources are Gaussian.
Cardoso and Souloumiac (1998)

TDSEP/SOBI yes always (since we consider here
Ziehe and Miller (1998) only the case without auto-correlations)
Belouchrani et al. (1997)

nonstationary yes Time course of the activity levels are
Pham and Cardoso (2000) proportional to each other.

Table 2: Availability of other ICA and BSS algorithms

QML(tanh) guasi maximal likelihood method with the hyperbolic tangent nonlinearity
QML (pow3) quasi maximal likelihood method with the cubic nonlinearity
0.1

Online(tanh) online version of QML(tanh) with learning ratgt) = 20

Online(pow3) | online version of QML(pow3) with learning ratgt) = QTZ/ZO)
'‘DoubleBlind’ | the double blind algorithm by Hyarinen and Hurri (2004)
JADE JADE algorithm

FastICA(tanh) | FastlCA with the hyperbolic tangent nonlinearity
FastICA(pow3)| FastICA with the cubic nonlinearity

TDSEP/SOBI | TDSEP/SOBI algorithm

'Sepagaus’ The 'sepagaus’ algorithm for nonstationary signals

by Pham and Cardoso (2000)

Table 3: ICA and BSS algorithms used in the experiments
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whereA* is the true mixing matrix an@ = BA". If B= PD(A*)~1 with a permutation matri® and
a diagonal matriD, then AmarilndexB, A*) = 0.

6.1 Artificial Data Sets

In all artificial data sets, five source signals of various types with lefigth10000 were generated
and data after multiplying a random<&b mixing matrix were observed. We made 100 replications
for each setting and compute the demixing matrix for each replication. Thediestdt was made
according to the experiments in Hyninen and Hurri (2004). The activity level&) were generated
from a multivariate AR(1) model, where outliers larger than three times stamt#sations from
the means were reduced to these bounds. The normalized sighalsre i.i.d. sub-Gaussian ran-
dom variables which are signed fourth-order roots of zero-meanromifariables. The medians of
the 100 replications are summarized in the rowsabG’ of Table 4 with the measure of deviation
(3rd-quantile— 1st-quantile)/2. As was pointed out by Hynnen and Hurri (2004), only 'Double-
Blind’ gave small Amarilndex. Because the marginal distribution of the sosignals(t) looks
like a Gaussian, all algorithms based on indices favouring non-Gaussfaititg. Even though
the determinant in the left hand side of (28) is close to 0, all the assumptiersatisfied and the
local consistency theorem is still valid. However, this does not directly nieanthe estimated
demixing matrix converges globally to the true one. In this case, many local opimenake the
algorithms fail. This could also be understood from the fact that the coritrastions based on
non-Gaussianity become almost flat and thus are very difficult to optimizéelaxperiments, we
observed that part of the true sources were often extracted correctly

Although all the algorithms except for 'DoubleBlind’ did not work for thesfidifficult exam-
ple, the theoretical study in principle tells that many ICA and BSS algorithmslsoeapplicable
to the variance-dependent BSS problem. So in fact the failure of theithimarexcept 'Double-
Blind’ can be solely explained by the particular choice of the data set whiichcgntrast to prior
findings in Hywvarinen and Hurri (2004). In the second example, uniform randorablas were
used ag;’s instead of sub-Gaussian ones. The marginal distribution of the ssigma!s;(t) looks
Laplacian. Therefore, as was shown in the rowuai’ of Table 4, the algorithms QML(tanh) and
FastICA(tanh), which are suitable for super-Gaussian sourceaysigive correct answers. The
algorithms 'DoubleBlind’, JADE and FastICA(pow3) based on 4-th ordements also worked ex-
cept several failures due to outliers. We got admissible results by théationsry BSS algorithm
'Sepagaus’, if an appropriate smoothing window was chosen.

In the third and the fourth data, the activity leve|ét) are sinusoidal functions with different

frequencies.
e . ((13+i)1t .
Vvi(t) = 1+0.95|n< 8000 ) i=1,...,5

For the normalized signalg, Laplacian and the sub-Gaussian i.i.d. random variables were used
in the third and the fourth examples, respectively. In the super-Gausssan(the row 'sirsupG’

of Table 4), the six algorithms except QML(pow3) and TDSEP/SOBI winBeoperly. 'Sepa-
gaus’ showed best performance, and QML(tanh) and FastICA(tzad€d on the hyperbolic tan-
gent nonlinearity gave better results than 'DoubleBlind’, JADE and Fagp@w~3) with 4-th order
moments. On the other hand, in the sub-Gaussian case (the rosuls{®’ of Table 4), the six algo-
rithms except QML(tanh) and TDSEP/SOBI returned admissible resultpaggels’ also showed
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QML(tanh) QML(pow3) Online(tanh) | Online(pow3) | 'DoubleBlind’
arsubG 8.25(1.85)| 11.32(2.84) 14.59(2.29)| 14.75(2.32)| 0.52(0.10)
ar.uni 0.30 (0.04)| 27.77 (0.32) 0.51(0.08)| 23.40(1.88)] 0.70(0.16)
sin.supG 0.17 (0.02)| 29.97 (0.26) 0.39 (0.05)| 28.74 (0.96)] 0.79(0.13)
sinsubG || 19.21 (0.24)] 0.32(0.05)| 21.51(2.08)] 0.57(0.30)] 0.27(0.03)
comsupG| 0.39(0.06)| 28.37 (0.27) 0.64 (0.09)| 25.67 (1.74)] 6.45(1.56)
comsubG || 26.53 (0.55)] 0.14(0.02)] 27.00(2.41)| 0.28(0.05)| 22.05(1.96)
exp.supG 0.35(0.05)| 28.43 (0.45) 0.59 (0.07)| 22.84 (2.06)] 7.63(1.88)
uni_subG || 27.38 (0.17)] 0.13(0.02)] 27.24(1.27)] 0.27 (0.04)| 18.56 (1.66)
SSs 0.03 3.82 0.06 (0.01)| 2.79(0.53) 0.02
v12 0.01 3.73 0.06 2.89 (0.04) 0.21

JADE FastICA(tanh)| FastiICA(pow3)| TDSEP/SOBI| ’'Sepagaus’
arsubG || 10.79 (1.88)] 9.25(1.98)| 12.52(2.05)| 15.07 (1.96)] 1.19(0.48)
ar_uni 0.66 (0.14)| 0.38(0.05) 0.73(0.14)| 14.92(2.37)] 0.85(0.22)
sin_supG 0.43 (0.07)| 0.23(0.03) 0.41 (0.07)| 15.31(2.04)| 0.08 (0.01)
sin.subG 0.31(0.04)| 0.68(0.14) 0.33(0.05)| 15.70(1.94)] 0.08(0.01)
comsupG| 0.84(0.16)] 0.48(0.07) 0.87 (0.14)| 16.02(2.05)] 1.28(0.19)
comsubG || 26.49 (0.86)| 27.04 (0.38)] 26.65(0.17)| 16.23 (2.01)] 27.08 (0.40)
exp.supG 1.24 (0.23)| 0.44 (0.06) 1.20(0.22)| 16.47 (1.81), 1.28(0.20)
uni_subG 0.17 (0.03)| 0.18(0.03) 0.18 (0.03)| 16.20(1.78)| 27.08 (0.33)
SSS 0.02 0.19 (0.04) 0.09 (0.01) 0.01 0.01
v12 0.19 0.17 (0.02) 0.08 (0.09) 0.14 0.01

Table 4: Amarilndex of the estimators. The values are the medians of 10€ateEms with the
measure of deviation(3rd-quantile- 1st-quantilg/2

best performance, and all four algorithms with 4-th order moments shoetest berformance than
the FastICA(tanh).

The double blind algorithm ('DoubleBlind’) by Hyarinen and Hurri (2004) does not work
when (i) allv;'s have same temporal structure, and (ii) there exist no temporal depseslan;’s.
'Sepagaus’ does not have a guarantee to separate sources eithesdsmoothed sequences of the
activity levels are nearly proportional to each other (see Table 2). Ttheafid sixth data set are
examples of the case (i), whergt) are the same sinusoidal functions.

vi(t) =1+ O.93in(£>

500/’ i=1...

,5

As in the third and the fourth examples, Laplace and the sub-Gaussian niddmavariables were
used for the normalized signats As in the row 'comsupG’ of Table 4, the five algorithms ex-
cept QML (pow3), 'DoubleBlind’ and TDSEP/SOBI worked properlymang them, QML(tanh)
and FastICA(tanh) had better performance. 'DoubleBlind’ gave pesults, because the matrix
Kij = (ﬁv{az(-),sj% —1)} is almost singular. In the sub-Gaussian case, it looks quite difficult to
distinguish the sources visually. Unfortunately, we could not demix themecty except with
QML(pow3) as shown in the row 'comubG’ of Table 4. In order to check why other algorithms
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with the local consistency did not work, we carried out extra experimeitkslarger sample size

T. WhenT = 200000, the Amarilndices of the estimated demixing matrices by JADE are below
0.11, 92 times out of 100 repetition. On the other hand, both FastiICA methadsed valid re-
sults almost always (Amarilndices are belov2®, 89 times for FastiCA(tanh) and 100 times for
FastICA(pow3) ), ifT = 50000 and the algorithms start from the true demixing matrix. Therefore,
we think that the global convergence is not achieved in these casesiseeaf finite sample size
effects and local optima.

The seventh and the eighth data sets are examples of the case (i) wWihéei.d. in timet. In
the former example, we transform 5 independent exponential randoabhes linearly such thag
andv; have correlation @, andz’s were i.i.d Laplace random variables. On the other hand, in the
latter exampley(t) was generated from 5 uniform random variables by the same lineardraresf
tion andz’s were the i.i.d sub-Gaussian random variables. As one can see in thexmsupG’ of
Table 4, the results are similar to the data set 'cpG’. On the other hand, in the sub-Gaussian
case summarized in the row 'usubG’ of Table 4, QML(pow3), JADE, FastICA(tanh) and Fas-
tICA(pow3) gave correct results, but 'Sepagaus’ showed veoy performance. We remark that in
both cases, 'DoubleBlind’ did not work as was expected.

We would now like to digest the results from Table 4 and relate them to ouretiearfind-
ings. We have shown that all algorithms except for TDSEP/SOBI have ta¢ ¢onsistency for
most of the given data. However, this does not directly mean that theygmyglobally to the true
solution. Although we hope that algorithms with a local consistency workegshppve sometimes
see significant deviations from this expectation in practice as in Table 4algbédthmic failures
are caused by local optima as pointed out above for the data s&ili@’, or more importantly to
numerical stability and convergence issues. For example, since leatgorihans like gradient
descent are used for QML(tanh) and QML(pow3), desired solutiegsil{bria) turn out to be in-
stable for sub-Gaussian (QML(tanh)) and super-Gaussian signsls((@w3)). In our data sets,
‘ar_uni’, all data sets with 'supG’ and acoustic signals are super-Gausgiule, all data sets with
'subG’ except 'arsubG’ are sub-Gaussian. One can see the clear pattern in the columr(s&QNL
and QML(pow3). The online version Online(tanh) and Online(pow3) $laghtly degraded per-
formance with appropriate learning rate, if the batch version QML (tanth) L (pow3) worked,
respectively. On the other hand, although FastICA uses similar criterisofoGaussianity, it em-
ploys a kind of Newton’s method and so the desired solutions are automatietilly stabilized. In
the columns FastICA(tanh) and FastICA(pow3), except for the diffade 'comsubG’ and nearly
Gaussian case 'aubG’, both algorithms succeeded.

6.2 Variance-Dependent Speech Signals

Next we will deal with more realistic data sets. Speech and audio signalsoftevebeen used
as sources(t) even for experiments of the instantaneous ICA model. In order to cheekheh
variance-dependency matters to many ICA and BSS algorithms, we appli®@daB8srithms to
speech signals which have strong variance-dependency.

In the first experiments 'ss& we took two speech signals with length= 120976, where
one speaker says digits from 1 to 10 in English, and the other speak&s@ilthe same time in
Spanish. We used the separated signals of their second demo as tles seeicause their separation
quality is good enough. Figure 2 shows the sources and the estimatoré afctingty levels with

8. The signals were downloaded frdtp://inc2.ucsd.edu/ ~tewon/ .
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an appropriate smoother. We inserted one short pause at differgitiops of both sequences to
make correlation of the activity levels of the modified signals much larg&bJ0 In the second

experiments 'v122 we took two speech signals from Japanese t€x:(48000). Figure 3 shows
the sources and the estimators of the activity levels. We extended andnsbacte syllable of the

second sequence and tuned its amplitude such that the two sources evarizigce-dependency.
Correlation of the activity levels of the arranged signals becom&st 0

NN

40000 80000 120000

Figure 2: The sources of the data set 'sss’ and the estimators of theityaldvels. The upper
panel contains the signals showing counting from 1 to 10 in English ands®panhe
lower panel shows their activity levels with an appropriate smoother.

e  —

10000 20000 30000 40000

R j\MMWwWMMMM

10000 20000 30000 40000

Figure 3: The sources of the data set 'v12' and the estimators of theiitadtivels. The upper
panel are signals from Japanese sentences. The lower panel thieowmactivity levels
with an appropriate smoother.

A 2 x 2 mixing matrixA was randomly generated 100 times and 100 different mixtures of the
source signals were made. The results are summarized in the rows ‘dsglahof Table 4. In

9. The signals can be downloadedHttp://www.islab.brain.riken.go.jp/ ~muralicaivl.wav  andv2.wav .
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both experiments, QML(tanh), JADE, TDSEP/SOBI and 'Sepagausiyawvorked, while Fas-
tICA(tanh) and FastICA(pow3) gave admissible results except forraeeases. Although TD-
SEP/SOBI is not applicable to the variance-dependent BSS model, it alisnae correct results.
This means that the speech signals are not perfectly matching the moddl) Hout(the sources
have furthermore a lagged autocorrelation. QML(tanh) always redunreng answers, because
speech is usually super-Gaussian.

7. Conclusions

In this paper, we discussed semiparametric estimation for blind sourceasepawhen sources
have variance dependencies. Hyimen and Hurri (2004) introduced the double blind setting where,
in addition to source distributions, dependencies between componentstarestricted by any
parametric model. In the presence of these two nuisance parameteiti¢derisactivity level and
underlying signal), they proposed an algorithm based on lagged 4-th andeulants. Although
their algorithm works well in many cases, it fails if (i) &jls have similar temporal structure, or (ii)
there exist no temporal dependenciesils. Furthermore it also suffers from outliers.

Extending the semiparametric approach (Amari and Cardoso, 1997) variEnce dependen-
cies, we investigated estimating functions for the variance-dependent®88&. In particular, we
proved that the quasi maximum likelihood estimator is derived from an estimatingién, and is
hence consistent regardless of the true nuisance densities (whicly satisfin mild conditions).
We also analyzed other ICA algorithms within the framework of (asymptotic) estighfunctions
and showed that many of them can separate sources with coheremiceariar his is in contrast
to previous understanding of the mechanisms underlying ICA algorithmsor&teally we have
shown that at least asymptotically all BSS algorithms except for TDSEP/&& the local con-
sistency, thus they should succeed on a given mixed data. Howevdrctotsstency does not
necessarily guarantee global convergence to the true solution andwedire@s see significant de-
viations from this expectation in practice. The algorithmic failures are due ty hoaal optima
and more importantly due to numerical stability and convergence issues.

Although almost all ICA and BSS algorithms could not give correct ansiethe numerical
experiment of Hy@rinen and Hurri (2004), we showed here that this was mainly a matter of the
specific choice of the data set. In fact, most ICA and BSS algorithms aldowedlin many other
benchmark examples that use dependent data. In particular, we cautieglo experiments with
highly variance-dependent speech signals. Despite the dependpimadiyyfound in speech, most
ICA and BSS algorithms yield excellent separation results and our thedratiaysis can help
to understand the reason for this fact. We conjecture that it is not theecaamplitude structure
(e.g. from dependence) that matters for BSS but the statistical fine sewétine signals.

In this paper, we only tested existing ICA and BSS algorithms and pointed ausdime of
them are applicable to the variance-dependent BSS model. Futurectesgélhgo one step further
and construct more efficient or robust semiparametric algorithms. Notdhals@n practice, it is
important to analyze how to select the best BSS method for a specific asenee-dependent data
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set. We think that suitable methods might be developed along the lines of Meiaeak (2002) or
Harmeling et al. (2004).
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Appendix A. Comments on Other Selected BSS Algorithms

We will discuss in the following the local consistency of ICA/BSS algorithmsepkdhe quasi
maximum likelihood method.

A.1 FastICA

FastICA is one of the standard algorithms for blind source separatioru(let C~1/?x(t) be the
whitened data, wher€ = £ 57, x(t)x" (t) is the sample covariance. FastICA gives the demixing
matrixW = (wy, ...,Wp) " which maximizes the total non-Gaussianity

n 1 T
izi?t;G{WiTU(t)}

under the orthogonality conditiad’ W' = |. We use, in the following the notatioi for the demix-

ing matrix after whitening in order to distinguish it from the total demixing maBix WC1/2
including whitening process. Hef&is a nonlinear function which is introduced to approximate the
negentropy (Hyérinen et al., 2001b). By solving the constrained optimization problem, winaee
the estimator o¥V must satisfy the estimating equation

T

tZl [y(t)yT (t) —1+y(®g" {y®)} —g{y®)}y" ()] =0 (37)

wherey(t) =Wu(t). If we write the total demixing matrix &8 =WC /2, y(t) can be expressed as
Bx(t). The vector functiorgy(y) consists of the derivativegy;) = G'(yi), thatis,g(y) = (g(y1),-.-,9(yn)) "
The functions (12) and (13) are also used as the fungioWe remark that the equation (37) is
equivalent to

)
> [0 o) -gtyoy o] = o (38)

)
> oy -1 = o (39)
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because the left hand side of (38) is antisymmetric, while that of (39) is symemétve determine
the scales of the sources such that

: [i{brxanz

B,pz7pv] =T, i=1,...,n, (40)

then it is easy to show that the expectations of the left hand side of (3§B&haanish regardless
of the nuisance functions, andpy, in the same way as for the quasi maximum likelihood method.
This means that the left hand side of (37) satisfies the unbiasednessaro(i¥4) of estimating
functions. If the other regularity conditions hold, it becomes an estimatingfimand the esti-
matorB derived from it converges to the correct demixing maBix= (A*)~! with a permutation
matrix P and a diagonal matri®o. Although the estimating function is similar to that of the quasi
maximum likelihood, FastICA algorithm is based on the Newton’s algorithm, andftire, it has
globally more stable dynamics than the natural gradient learning.

A.2 The Double Blind Algorithm by Hyv arinen and Hurri (2004)

Hyvarinen and Hurri (2004) proposed an algorithm for separating esurader the double blind
situation. The estimator is obtained by maximizing

2

IW) = 5 [EV{y?().¥3( — At}

1)

under the orthogonality conditioWW' = |, where

T
UV ()80} = == Y ORI -a0) 1
t=At+1
Let us assume that
cuny(si(-),sj(-), (- —At),s (- —At)}
1 T 1 T T
= o,y SOSONE-AS(E-80 -5 5 sOS(0) T (s ()
1 T T
_mtzgﬂs(t)sk(t —At)tzgﬂsj (t)si(t—Ab)
1 T T
TTon?, t+154(t)$4(t—At)t: t+1sj (t)sc(t —At)
Kik—i-Op(l), i = j, k=1
{ 0p(1), otherwise

that is, the empirical cumulants of the source sigiil= (A*)~x(t) converge to their expectation,

where
1 T T T

Ki=5 g, 3 EI0OSEo0)- %;5 0] 3 5]

476



ESTIMATING FUNCTIONS FORVARIANCE-DEPENDENTBSS

By ignoring higher-order terms, we get

J=Y (gGKuaj)?
i,J;,I e

whereQ = (g;j) = BA" andB = WC /2 indicates the demixing matrix without whitening. Pro-
vided that the matriX = (Kjj) is non-singular, the quantity is maximized wherQ is a signed
permutation matrix, that is, by maximizing the criteridnve can estimate the true demixing ma-
trix B* = (A*)~1 up to signed permutation matrices. This also means that the algorithm does not
work if there is no temporal covariance dependencies (for example athesdts 'expupG’ and
'uni_subG’ in our experiment), or all sources have exactly same temporaiaoea dependencies
(for example, the data sets 'casupG’ and 'comsubG’ in our experiment).

Although the authors have already given its validity as mentioned above, ilveheck its
estimating equation. By solving the constrained optimization problem, we see ¢hedttmator is
obtained from the estimating equation

F(X,B)=0, (41)
where
T o~ o~
Fij(X,B) Zi{yl )it 6ij}+t:§+l [Z(Kn — Kji)yf(t — At)yi(t)y; (t)
+Z K|. K” (t)yi(t — At)y; (t—At)] (42)

andlzij = cov{y?(-),yj(- — At)}. By replacingKij with Kjj, let us define the function

T T
Fj(X,B) = Z{Yi(t)Yj (t)_éij}+t:§ . [Z(Kn — Kj)yP(t— Aty (t)y; (t)

+ZK|. Kij)yf y.(t—At)yJ(t—At)] (43)

Suppose thak (X,B) is an estimating function which fulfill§ (X, B) = Op(T¥/2), whenB is the
true parameter. If the functida(X, B) satisfies

F(X,B) = F(X,B) +0p(TY?) (44)

for any B such that||B — B|| = O(T~%/2), it can be shown that the residual does not matter to
the asymptotic property of the estimator and the soluBoof (41) is asymptotically equivalent
to that of the equatiofr (X,B) = O (see Cardoso, 1997). In fact, we can prove (44) under mild
conditions, that is, the difference between the functions (42) and &8pe neglected. Therefore,
we will check whetheF (X, B) actually satisfies the conditions of estimating functions. If we take
the constraints (40) to determine the scales of the sources, the unbesedndition (14) follows
from uncorrelatedness of the sources and

;
Z(Kil —Kj) E[yf(t - Atyi(t)y;(1)]

t=At+1

; ZKH Kiji) E [VP(t — At)vi (t)v;(t)] E[Z(t—At)] E[z(t)z(t)] =0,
T+1
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;HZ (Kii — Kij) E [YR(t)yi (t — At)y; (t — At)]

-3 3 (K — Ky E (V0w ~ 804t~ 60)] E[(0)] Ela (- a7~ a0)

t=AT+1
= 0.

We remark that the expectations are taken with respeetXdB, p;, pv), and therefore

y(t) = Bx(t) = s(t) holds. If the other regularity condition hold8(X, B) turns out to be an asymp-
totic estimating function which is asymptotically equivalent to an estimating functidrirenesti-
matorB converges to the correct demixing matx = (A*)~1.

A.3 JADE

Although in a rigorous sense, the asymptotic properties of JADE shouldhélgzad as in the
previous section (see also Cardoso, 1997), its consistency canwe slare easily (as suggested
by one of the anonymous reviewers). Suppose that the contrast fuottidDE

Jiape(W) = ; ’ﬁJTT(Yiayjayhyl)‘z
ijk(iiki

uniformly converges to the ideal contrast function

Jinpe(W) = z fcum()’i,YjaYk,Y|)|2
i jk( ikl

on the set of orthogonal matrices such thaWww' = |, wherecum and cum denote the empirical
and the expected cumulant tensor, respectively. Then, the minimum JdfdhgW) converges

to that of Jj,pe(W). If W is the true demixing matrix ang’s are extracted signals witW, the
componentsjq := cum(y;,Y;, Y, yi) of the expected cumulant are zero exceptferj =k=1 or
i=j#k=Ilori=I+# j=k. Thus, one needs only to show that the estimating equation is associated
to the minimization of Z lcum(yi,Y;, i, Y;j) |2 under the orthogonality constraints which is satisfied

7]
wheny; equals the true sources (up to a scaling and a permutation). The estimat@igeds

T

t; { Elyi(D)y; ()] — 8
;KIKIKE ; K]k]kE )yj( )]} 0> (45)

which can be seen to be satisfied, whga equal to the true sources. We remark that the same
formula as (45) can be obtained after the rigorous analysis. The funehiooh is associated with
the asymptotic estimating function (see (43)) becomes

.
Flj(X,W)_tzl{Yi(t)Yj( ) =8+ 3 KiiYe (t)yi ()y; (t ZKJkayz Vi (t)y; (t }

K#1
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A.4 TDSEP/SOBI

Let us define lagged covariance matrices(oj

R(A) = % i E[x(t)xT(t—At)}

.
N {%t_ng [s(t)sT (t— At)} } (AT

When the sources’s are mutually independent and have temporal covariance structudeittiz-
ing matrixPD(A*) ! can diagonalize all lagged covariance matright ), where P is a permutation
matrix and D is a diagonal matrix. This property has been used in blind sigpanaethods with
second order statistics (Tong et al., 1991; Belouchrani et al., 1997 Zied Miller, 1998).

In the variance-dependent BSS model, for anyt andAt > 1,

E[s (1)sj(t — A)] = EM (1)) (t — A1) E[z(1)z5(t — At)] = 0.
Therefore R(At) = 0 for At > 1, that is, we cannot get any information about the mixing matrix

from lagged covariance matricBAt). This is why TDSEP does not work for this model.
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