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Abstract

A blind separation problem where the sources are not independent, but have variance dependencies
is discussed. For this scenario Hyvärinen and Hurri (2004) proposed an algorithm which requires
no assumption on distributions of sources and no parametricmodel of dependencies between com-
ponents. In this paper, we extend the semiparametric approach of Amari and Cardoso (1997)
to variance dependencies and study estimating functions for blind separation of such dependent
sources. In particular, we show that many ICA algorithms areapplicable to the variance-dependent
model as well under mild conditions, although they should inprinciple not. Our results indicate
that separation can be done based only on normalized sourceswhich are adjusted to have station-
ary variances and is not affected by the dependent activity levels. We also study the asymptotic
distribution of the quasi maximum likelihood method and thestability of the natural gradient learn-
ing in detail. Simulation results of artificial and realistic examples match well with our theoretical
findings.

Keywords: blind source separation, variance dependencies, independent component analysis,
semiparametric statistical models, estimating functions

1. Introduction

Blind methods of source separation have been successfully applied to manyareas of science
(e.g. Hyv̈arinen et al., 2001b; Olshausen and Field, 1996; Makeig et al., 1997; Vigario, 1997;
Ziehe et al., 2000; Thi and Jutten, 1995; Cardoso, 1998a; Parra andSpence, 2000; Cardoso, 2003;
Meinecke et al., 2005). The basic model assumes that the observed signals are linear superpo-
sitions of underlying hidden source signals. Let us denote then source signals by the vector
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s(t) = (s1(t), . . . ,sn(t))>, and the observed signals byx(t) = (x1(t), . . . ,xm(t))>. In this paper,1

we will focus on real-valued signals. The mixing can be expressed as the equation

x(t) = As(t),

whereA = (ai j ) denotes the mixing matrix. For simplicity, we consider the case where the number
of source signals equals that of observed signals (n = m). Both the sourcess(t) and the mixing
matrixA are unknown, and the goal is to estimate them based on the observationx(t) alone.

In most blind source separation (BSS) methods, the source signals are assumed to be statisti-
cally independent. Blind source separation based on such a model is calledindependent component
analysis (ICA). By using non-Gaussianity of the sources, the mixing matrix can be estimated and
the source signals can be extracted under appropriate conditions. There are also further approaches
of BSS, that are, for example, based on second-order statistics and algorithms exploiting nonstation-
arity. The second-order methods are applicable to the case where the source signals have (lagged)
auto-correlation. Provided that components have nonstationary, smoothlychanging variances, the
model can be estimated as well by algorithms based on nonstationarity of signals.

Among many extensions of the basic ICA models, several researchers have studied the case
where the source signals are not independent (for example, Cardoso, 1998b; Hyv̈arinen et al., 2001a;
Bach and Jordan, 2002; Valpola et al., 2003, see also references in Hyvärinen and Hurri, 2004). The
dependencies either need to be exactly known beforehand, or they aresimultaneously estimated by
the algorithms. Recently, a novel idea called double-blind approach was introduced by Hyv̈arinen
and Hurri (2004). In contrast to previous work, their method requiresno assumption on the distri-
butions of the sources and no parametric model of the dependencies between the components. They
simply assume that the sources are dependent only through their variances and that the sources have
temporal correlation. In the Topographic ICA (Hyvärinen et al., 2001a), the dependencies of the
sources are also caused only by their variances, but in contrast to the double blind case, they are
determined by a prefixed neighborhood relation. It should be noted that for such dependent compo-
nent models identifiability results have not been theoretically established so far, while identifiability
of multidimensional ICA was proven by Theis (2004).

A statistical basis of ICA was established by Amari and Cardoso (1997). They pointed out that
the ICA model is an example of semiparametric statistical models (Bickel et al., 1993; Amari and
Kawanabe, 1997a,b) and studied estimating functions for it. In particular, they showed that the quasi
maximum likelihood (QML) estimation and the natural gradient learning give a correct solution re-
gardless of the true source densities which satisfy certain mild conditions. Inthis paper, we extend
their approach to the BSS problem considered in Hyvärinen and Hurri (2004). Investigating esti-
mating functions for the model, we show that many of ICA algorithms based on theindependence
assumption can achieve consistent solutions in a local sense, even if thereexist variance depen-
dencies, which is astonishing and seems somewhat counterintuitive. We remark that estimating
functions are concerned with local consistency (’consistency’ will denote its local version in the
following) and in general have spurious solutions. For a few algorithms, even global consistency
has been proven by different principles (for example, Hyvärinen and Hurri, 2004). Nevertheless,
our result goes beyond existing ones, because it covers most types ofBSS algorithms and can give
asymptotic distributions. The main message of this paper is that most ICA algorithmscan be proven
to be consistent in our frameworkalthoughthe data isnot independent. So they must effectively

1. This is an extended version of Kawanabe and Müller (2004) presented at ICA2004.
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ESTIMATING FUNCTIONS FORVARIANCE-DEPENDENTBSS

use some concept beyond independence. Thus our consistency results indicate that separation can
be done based only on normalized sources which are adjusted to have stationary variances and is
not affected by the dependent activity levels.

This paper is organized as follows. At first, we define the variance-dependent model in Section
2 and explain estimating functions, a useful tool for discussing semiparametric estimators in Section
3. In Section 4, we discuss the relation between estimating functions for the ICA model and those
for the variance-dependent BSS model in general. It is shown that these algorithms work properly,
even ifthere exist spatiotemporal variance dependencies. Among several ICAalgorithms, the quasi
maximum likelihood method and its online version, the natural gradient learning are discussed in
detail. We study the asymptotic distributions of the quasi maximum likelihood method (Section
5.1) and the stability of the natural gradient learning (Section 5.2). We also give a brief summary
about several other ICA algorithms from our viewpoint in Section 5.3. Detailed discussion can
be found in Appendix A. The theoretical insights are underlined by several numerical simulations
in Section 6. In particular, we carried out two experiments, where we extract two speech signals
with high variance dependencies. It is sometimes believed that ICA algorithms work for mixture of
acoustic signals or natural images because the data are sparse and oftendisjoint. Our results show
that they can also separate even highly coherent signals, and our theoretical analysis can thus help
to understand the reason.

2. Variance-Dependent BSS Model

Hyvärinen and Hurri (2004) formalized the probabilistic framework of variance-dependent blind
separation. Let us assume that each source signalsi(t) is a product of non-negative activity level
vi(t) and underlying i.i.d. signalzi(t), that is,

si(t) = vi(t)zi(t). (1)

We remark that the sequences of the vectorss= (s1, . . . ,sn)
>, v= (v1, . . . ,vn)

> andz= (z1, . . . ,zn)
>

are considered as multivariate random processes in this paper. In practice, the activity levelsvi(t)
are often dependent among different signals and each observed signal is expressed as

xi(t) =
n

∑
j=1

ai j v j(t)zj(t), i = 1, . . . ,n,

wherevi(t) andzi(t) satisfy:

(i) vi(t) andzj(t ′) are independent for alli, j, t andt ′,

(ii) eachzi(t) is i.i.d. in time for alli, the random vectorz= (z1, . . . ,zn)
> is mutually independent,

(iii) zi(t) have zero mean and unit variance for alli.

No assumption on the distribution ofzi is made except (iii). Regarding the general activity levelsvi ’s,
vi(t) andv j(t) are allowed to be statistically dependent, and furthermore, no particular assumption
on these dependencies is made (double blind situation). We refer to this framework as the variance-
dependent BSS model in this paper. Figure 1 shows an example of the sourcess used in the model.
As stated in the assumption (ii) above, the normalized signalsz1 andz2 are mutually independent.
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Figure 1: Sources(s1,s2) with variance dependencies in the variance-dependent BSS model. In the
middle panels bothvi and−vi are plotted for clarity.

However, since the sequencesz1 andz2 are multiplied by extremely dependent activity levelsv1 and
v2, respectively, the short-term variance of the source signalss1 ands2 are highly correlated.

Hyvärinen and Hurri (2004) proposed an algorithm which maximizes the objective function

J(W) = ∑
i, j

[ ĉov([w>
i u(t)]2, [w>

j u(t −∆t)]2) ]2,

whereĉov denotes the sample covariance,W = (w1, . . . ,wn)
> is constrained to be orthogonal and

whereu(t) is obtained by preprocessing the signalx(t) by spatial whitening. It was proved that
the objective functionJ is maximized whenWAequals a signed permutation matrix, if the matrix
K = (Ki j ) = (cov{s2

i (t),s
2
j (t −∆t)}) is of full rank. This method shows good performance as long

as there exist temporal variance dependencies and the data is not spoiledby outliers (see Meinecke
et al., 2004).

It is important to remark that the nonstationary algorithm by Pham and Cardoso (2000) was
also designed for the same source model (1), except thatvi(t)’s are assumed to be deterministic and
slowly varying. However, it is straightforward to show validity of this algorithm, whenvi(t)’s are
(slowly-varying) random sequences.

3. Semiparametric Statistical Models and Estimating Functions

Amari and Cardoso (1997) established a statistical basis of the ICA problem. They pointed out that
the standard ICA model2

p(X|B,ρs) = |detB|T
T

∏
t=1

n

∏
i=1

ρsi{b>i x(t)} (2)

is an example of semiparametric statistical models (Bickel et al., 1993; Amari andKawanabe,
1997a,b), whereB = (b1, . . . ,bn)

> = A−1 is the demixing matrix to be estimated andρs(s) =
n
Π
i=1

ρsi (si) is the density of the sourcess. Notations used in the following sections are also sum-

marized in Table 1. As the functionρs in this model, semiparametric statistical models contain
infinite dimensional or functional nuisance parameters which are difficult toestimate. Moreover,
they even disturb inference on parameters of interest.

2. Since the sources are assumed to be i.i.d. in time, people consider the distribution of one samplex instead of the
entire sequenceX.
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x(t) = (x1(t), . . . ,xn(t))> observed data att

X = (x(1), . . . ,x(T)) whole sequence of the observed data

s(t) = (s1(t), . . . ,xn(t))> source signals att

v(t) = (v1(t), . . . ,vn(t))> general activity levels of the sourcess(t)

V = (v(1), . . . ,v(T)) whole sequence of the activity levels

z(t) = (z1(t), . . . ,zn(t))> normalized source signals by the activity levelsv(t)

A n×n mixing matrix

B = (bi j ) = (b1, . . . ,bn)
> demixing matrix which is equivalent toA−1

ρz(z) =
n
Π
i=1

ρzi (zi) density of the normalized source signalsz

ρV(V) density of the entire sequenceV = (v(1), . . . ,v(T))

of the activity levels

y(t) = Bx(t) extracted sources by the demixing matrixB

F(x,B) or F̄(X,B) estimating function which is ann×n matrix-valued

function of the data and the parameterB

vec(F) vectorization operator

= (F11, . . . ,Fn1, . . . ,F1n, . . . ,Fnn)
>

Table 1: List of notations used in the variance-dependent BSS model

In the variance-dependent BSS model which we consider, the sourcess(t) are decomposed of
two components, the normalized signalsz(t) = (z1(t), . . . ,zn(t))> and the general activity levels
v(t) = (v1(t), . . . ,vn(t))>. Since the former has mutual independence like the ICA model, the den-
sity of the dataX is factorized as

p(X|V;B,ρz) = |detB|T
T

∏
t=1

n

∏
i=1

1
vi(t)

ρzi

{
b>i x(t)
vi(t)

}
, (3)

whenV = (v(1), . . . ,v(T)) is fixed. Therefore, the marginal distribution can be expressed as

p(X|B,ρz,ρV) =
Z

p(X|V;B,ρz)ρV(V)dV, (4)

where the densityρV of V becomes an extra nuisance function.
In order to construct valid estimators for such semiparametric models, estimatingfunctions were

introduced by Godambe (1976). Let us consider a general semiparametric model p(x|θ,ρ), where
θ is anr-dimensional parameter of interest andρ is a nuisance parameter. Anr-dimensional vector
valued functionf (x,θ) is called an estimating function, when it satisfies the following conditions
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for anyθ andρ (Godambe, 1991),

E[ f (x,θ) |θ,ρ] = 0,

|detQ| 6= 0, whereQ = E

[
∂

∂θ
f (x,θ)

∣∣∣∣θ,ρ
]
,

E
[
‖ f (x,θ)‖2

∣∣θ,ρ
]
< ∞,

where E[·|θ,ρ] denotes the expectation overx with the densityp(x|θ,ρ) and‖ · ‖ is the Euclidean
norm. Suppose i.i.d. samplesx(1), . . . ,x(T) are obtained from the modelp(x|θ∗,ρ∗). If such a
function exists, by solving the estimating equation

T

∑
t=1

f (x(t), θ̂) = 0, (5)

we can get an estimator̂θ with good asymptotic property. Such an estimator that is a solution of an
estimating equation as (5) is called an M-estimator in statistics (Huber, 1981). Itcan be regarded
as an extension of the maximum likelihood method for parametric models. The M-estimator θ̂ is
consistent regardless of the true nuisance parameterρ∗, when the sample sizeT goes to infinity.
Moreover, it is asymptotically Gaussian distributed, that is,θ̂ ∼ N(θ∗,Av), where Av denotes the
asymptotic variance computed by the following equation

Av = Av(θ∗,ρ∗) =
1
T

Q−1 E
[

f (x,θ) f>(x,θ)
∣∣∣θ∗,ρ∗

]
(Q−1)>,

andQ = Q(θ∗,ρ∗) = E
[

∂
∂θ f (x,θ)

∣∣∣θ∗,ρ∗
]
. We remark that the asymptotic variance Av depends on

the true parameters(θ∗,ρ∗), but not on the datax(1), . . . ,x(T). As we will explain in Section 4.2,
notions of estimating functions and M-estimators were extended to non i.i.d cases.

Although estimating functions are useful for semiparametric models, it is non-trivial to find such
functions. Amari and Kawanabe (1997a,b) studied this problem from a geometrical point of view
and gave a guideline for discussing estimating functions.

The asymptotic result guarantees theoretically that the estimatorθ̂ derived from the estimating
function converges to the true parameterθ∗ under mild conditions. However, we should remark
that the asymptotic variance Av of the estimator depends on the true nuisance parameterρ∗. For
example, when the matrixQ is almost singular atρ∗, it can happen that the asymptotic variance
Av becomes very large. This may cause some practical problem, that is, the estimate from finite
samples can be no longer close to the true parameter. We will revisit this issue inSection 6.

Furthermore, online algorithms with similar consistency property can also be constructed from
estimating functions,

θt+1 = θt −ηt f (x(t),θt), (6)

θt+1 = θt −ηt R(θt) f (x(t),θt), (7)

whereR(θ) is ann×n nonsingular matrix and depends only onθ. We remark that the functions
f (x,θ) andR(θ) f (x,θ) give the same estimating equation, ifR(θ) has the inverse matrix and does
not depend on the datax. Such functions are called equivalent estimating functions. It is also easyto
see that the online algorithms (6) and (7) have the same equilibria points. However, their dynamics
are different. The stability of such online learning was investigated by Amariet al. (1997).
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4. General Properties of Estimating Functions for Blind Separation

In this section we will at first review estimating functions for the ICA model (2) (see also Amari and
Cardoso, 1997; Cardoso, 1997) and then discuss our contribution, that is, by defining estimating
functions for the variance-dependent BSS model (3) and (4).

4.1 Estimating Functions for Ordinary Blind Source Separation

In case of the ICA model, the parameter of interest is then×n matrix B = A−1 and hence it is con-
venient to write the estimating functions inn×n matrix formF(x,B). The conditions of estimating
functions are reshaped accordingly as

E[F(x,B) |B,ρs] = 0, (8)

|detQ| 6= 0, whereQ = E

[
∂vec{F(x,B)}

∂vec(B)

∣∣∣∣B,ρs

]
, (9)

E
[
‖F(x,B)‖2

F

∣∣B,ρs
]
< ∞, (10)

where vec(F) = (F11, . . . ,Fn1, . . . ,F1n, . . . ,Fnn)
> is the vectorization of matrices and‖ · ‖F denotes

Frobenius norm. It should be noted that both in usual ICA models and in the variance-dependent
BSS model, scales and orders of the sources cannot be determined, thatis, two matricesB andPDB
indicate the same distribution, whenP andD are a permutation and a diagonal matrix respectively
(Comon, 1994).3 Therefore, we can find any matrix in the equivalence class, so for notational
convenience we will fix scales as the constraints (25) later.4

One of the standard ICA algorithms originates from maximum likelihood estimation, which is
asymptotically the best method if the densityρs is known. Because in the semiparametric modelρs

is unknown and difficult to estimate, the idea is to use instead the maximum likelihood estimation
under a prefixed densitỹρs. The method is called the quasi maximum likelihood estimation, since
the fixedρ̃s does not coincide with the true one. The estimatorB̂ is derived from the equation

T

∑
t=1

[
I −ϕ{y(t)}y>(t)

]
= 0, (11)

wherey(t) = B̂x(t) is the estimator of the sources,ϕ(y) = (ϕ1(y1), . . . ,ϕn(yn))> and

ϕi(yi) = −
d

dyi
logρ̃si (yi).

For the nonlinear functionϕi(yi),

ϕi(yi) = tanh(cyi), c > 0, (12)

ϕi(yi) = y3
i , (13)

are often employed. The functionF(x,B) = I −ϕ{Bx}(Bx)> in (11) is an example of estimating
functions for the ICA model, provided that it satisfies (9) and (10). It is trivial to show that it fulfills
(8). Another example is the function

F(x,B) = Bx(Bx)>− I +(Bx) g>(Bx)−g(Bx) (Bx)>

3. It is clear that the variance-dependent BSS model has at least such indeterminacy. On the other hand, the identifiability
in this case has not been proved so far.

4. We ignore the permutation indeterminacyP, since it’s locally not problematic.
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for FastICA (see (37) in Appendix A.1), whereg(·) is a vector valued non-linear function asϕ(·).
We remark that this procedure can also be derived from minimum mutual information (Yang and
Amari, 1997) and infomax principle (Bell and Sejnowski, 1995).

In general the quasi maximum likelihood estimator is no longer consistent because of misspec-
ified distribution. However, in the ICA model (2), Amari and Cardoso (1997) found that the quasi
maximum likelihood method and its online version (the natural gradient learning)give an asymp-
totically consistent estimator, provided thatF(x,B) = I −ϕ{Bx}(Bx)> satisfies (9) and (10). In
particular, we remark that the assumed distributionρ̃s is not equal to the true one. This research has
motivated us to investigate also such semiparametric procedures for the variance-dependent BSS
model (3) and (4). In particular, we will show in Section 5.1 that the quasi maximum likelihood
method (11) still gives a consistent estimator even under this extended situation.

4.2 Estimating Functions for Variance-Dependent Blind Source Separation

In the variance-dependent BSS model, in contrast to the ICA model studiedby Amari and Cardoso
(1997), the data sequenceX = (x(1), . . . ,x(T)) is not i.i.d. in time, but might have time depen-
dencies. Therefore, we have to consider more general functionsF̄(X,B) of the whole sequenceX.
General estimating functions̄F(X,B) must satisfy

E[ F̄(X,B) |B,ρz,ρV ] = 0, (14)

|detQ| 6= 0, whereQ = E

[
∂vec{F̄(X,B)}

∂vec(B)

∣∣∣∣B,ρz,ρV

]
, (15)

E
[
‖F̄(X,B)‖2

F

∣∣B,ρz,ρV
]
< ∞, (16)

for all (B,ρz,ρV). An M-estimatorB̂ can be derived from the estimating equation

F̄(X, B̂) = 0. (17)

Suppose that the dataX is subject top(X|B∗,ρ∗
z,ρ∗

V) defined by (3) and (4).

Theorem 1 If the functionF̄(X,B) satisfies the conditions (14) – (16) and appropriate regularity
conditions such as Condition 2.6 in Sørensen (1999), the M-estimatorB̂ derived from the equation
(17) is asymptotically Gaussian distributedvec(B̂) ∼ N(vec(B∗),Av), where

Av = Av(B∗,ρ∗
z,ρ

∗
V) = Q−1 Σ(Q−1)>, (18)

Σ = Σ(B∗,ρ∗
z,ρ

∗
V) = E

[
vec{F̄(X,B∗)}vec{F̄(X,B∗)}>

∣∣∣B∗,ρ∗
z,ρ

∗
V

]

Q = Q(B∗,ρ∗
z,ρ

∗
V) = E

[
∂vec{F̄(X,B∗)}

∂vec(B)

∣∣∣∣B∗,ρ∗
z,ρ

∗
V

]
.

Proof See Sørensen (1999).

Now, we investigate the relation between estimating functions for the ICA model and those for
the variance-dependent BSS model. LetF(x,B) be an estimating function for the ICA model. In
the ICA context it is often the case that such estimating functions satisfy

E[Fi j (x,DB) |B,ρs] = 0, i 6= j, (19)
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for any diagonal matrixD, that is, its off-diagonal parts (19) hold for all matrices equivalent toB.
The scale factorD is determined usually by the diagonal parts of condition (8)

E[Fii (x,B) |B,ρs] = 0,

in the ordinary ICA model. We will soon present the equation for fixing the scale factorD in the
variance-dependent BSS model.

Let us consider the function

F̄(X,B) =
T

∑
t=1

F(x(t),B), (20)

which is used in estimating equations for the ICA model.5 We can show that this function becomes
a candidate of estimating functions for the variance-dependent BSS model.

Proposition 2 The functionF̄(X,B) defined in (20) satisfies condition (14), provided that F(x,B) is
an estimating function for the ICA model and fulfills (19). Furthermore, if the additional assumption

E
[
‖F(x(t),B)‖2

F

∣∣B,ρz,ρV
]
< ∞, ∀t (21)

holds, condition (16) is also satisfied.

Proof Taking expectations of the off-diagonal terms of (14), we get

E
[

F̄i j (X,DB)
∣∣B,ρz,ρV

]
= E

[
T

∑
t=1

E
[

Fi j (x(t),DB)
∣∣V;B,ρz

]
∣∣∣∣∣ρV

]

= E

[
T

∑
t=1

E
[

Fi j (x(t),DB)
∣∣B,ρs|v(t)

]
∣∣∣∣∣ρV

]

whereρs|v(t) is the density function ofs(t) when its activity level is fixed atv(t), that is,

ρs|v(t)(s) =
n

∏
i=1

1
vi(t)

ρzi

{
si

vi(t)

}
.

We remark that the expectation E[·|V;B,ρz] ( E[·|B,ρs|v(t)] ) is taken overz(t) (resp.s(t)) under fixed
activity levelsV, while E[·|ρV ] denotes the expectation over the activity levelV. Because (19) holds
for anyρs, we can prove

E
[

F̄i j (X,DB)
∣∣B,ρz,ρV

]
= 0,

for all diagonal matricesD. If we select the scale factorD such that the diagonal terms

E[ F̄ii (X,B) |B,ρz,ρV ] = 0

hold, F̄ satisfies the unbiasedness condition (14). We furthermore note that this scaling is different
from that in the ICA model presented before, and the expectation E

[
Fii (x(t),B) |B,ρs|v(t)

]
at each

time t can be non-zero in general.

5. We remark that some of ICA/BSS algorithms (for example, TDSEP/SOBI) are not based on estimating functions in
this class. Because it is not easy to discuss them in such a general form,we deal with other classes separately in
Appendix A.
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The left hand side of Eq. (16) can be expressed as

E
[
‖F̄(X,B)‖2

F

∣∣B,ρz,ρV
]

= E

[
∑
t,t ′

E
[

tr{F(x(t),B)F>(x(t ′),B)}
∣∣∣V;B,ρz

] ∣∣∣∣∣ρV

]

= E

[
∑
t

E
[
‖F(x(t),B)‖2

F

∣∣B,ρs|v(t)

] ∣∣∣∣ρV

]

+ E

[
∑
t 6=t ′

n

∑
i=1

E
[

Fii (x(t),B) |B,ρs|v(t)

]
E

[
Fii (x(t

′),B)
∣∣B,ρs|v(t ′)

]
∣∣∣∣∣ρV

]
, (22)

where we used the fact thatx(t) andx(t ′) (t 6= t ′) are independent for fixedV. From assumption
(21), the first term of Eq. (22) is finite.

∑
t

E
[

E
[
‖F(x(t),B)‖2

F

∣∣B,ρs|v(t)

] ∣∣ρV
]

= ∑
t

E
[
‖F(x(t),B)‖2

F

∣∣B,ρz,ρV
]
< ∞ (23)

We remark that condition (10) does not necessarily imply assumption (21). Let us define
c(v(t)) := E

[
‖F(x(t),B)‖2

F

∣∣B,ρs|v(t)

]
. Since

∣∣E
[

Fii (x(t),B) |B,ρs|v(t)

]∣∣ ≤
√

E
[

F2
ii (x(t),B)

∣∣B,ρs|v(t)

]
≤

√
c(v(t)) ,

the second term of Eq. (22) (calledr in the following) can be bounded as

|r| < n∑
t 6=t ′

E
[ √

c(v(t))
√

c(v(t ′))
∣∣∣ρV

]

≤ n

{
∑
t

√
E[ c(v(t)) |ρV ]

}2

≤ nT∑
t

E[ c(v(t)) |ρV ] .

Here we used Schwarz’s inequality twice. Because of Eq. (23), this bound is also finite.

The basic idea of this proof is that the situation becomes similar to the ordinary ICA model, if
the activity levelsV are fixed. Unfortunately, the other conditions are difficult to be proven inthis
general form. For example, the second condition can be transformed in thesimilar way as

E

[
∂vec{F̄(X,B)}

∂vec(B)

∣∣∣∣B,ρz,ρV

]

=
T

∑
t=1

E

[
E

[
∂vec{F(x(t),B)}

∂vec(B)

∣∣∣∣B,ρs|v(t)

] ∣∣∣∣ρV

]
. (24)

Even if each term E
[

∂vec{F(x(t),B)}
∂vec(B)

∣∣∣B,ρs|v(t)

]
is non-singular, it may still be possible that the sum

(24) becomes singular. However this is in practice an extremely rare case.
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5. Consistency Results for Variance Dependent Blind Source Separation Using the
Estimating Function Framework

We will use the estimating function framework to prove consistency results for(i) the quasi max-
imum likelihood type methods (for example, Pham and Garrat, 1997; Bell and Sejnowski, 1995),
(ii) the natural gradient learning for ICA (for example, Amari, 1998) and(iii) various other ICA al-
gorithms such as FastICA (Hyvärinen and Oja, 1997), TDSEP/SOBI (Ziehe and Müller, 1998; Be-
louchrani et al., 1997), ’Sepagaus’ (Pham and Cardoso, 2000) and JADE (Cardoso and Souloumiac,
1993).

5.1 Asymptotic Distribution of the Quasi Maximum Likelihood Estimator

In this section, it is shown that the quasi maximum likelihood method (11) as for example Pham and
Garrat (1997); Bell and Sejnowski (1995) still gives a consistent estimator even under the extended
model (3) and (4). For convenience, we fix the scales of the recovered signals as

E

[
T

∑
t=1

ϕi{b>i x(t)}b>i x(t)

∣∣∣∣∣B,ρz,ρV

]
= T, (25)

for i = 1, . . . ,n. Then (14) is automatically fulfilled for the diagonal terms. We remark that by this
constraints the length ofbi ’s may depend on the nuisance parameters(ρz,ρV), but this does not
change the following discussion, because the scales can be fixed arbitrarily.

Since the functionF(x,B) = I −ϕ{Bx}(Bx)> obviously satisfies (19), we already know from
Theorem 2 that the function

F̄QML(X,B) =
T

∑
t=1

[
I −ϕ{y(t)}y>(t)

]

satisfies the conditions (14) and (16) under the assumption

E
[

ϕ2
i {yi(t)}y2

j (t)
∣∣B,ρz,ρV

]
< ∞, ∀i, j, t, (26)

wherey(t) denotes the extracted sourcesBx(t). The additional assumption imposes mild restriction
on the distribution of the activity levelsV. For example, when the densityρV has extremely heavy
tails, the left hand side of Eq. (16) becomes infinite, even if condition (10) isfulfilled. Thus, we
need assumptions like (26) to exclude such unusual cases.

For better understanding, we directly analyze the off-diagonal terms of (14)

E

[
T

∑
t=1

ϕi{yi(t)}y j(t)

∣∣∣∣∣B,ρz,ρV

]

=
T

∑
t=1

E
[

E
[

ϕi {vi(t)zi(t)} v j(t)zj(t)
∣∣V;B,ρz

] ∣∣ρV
]

=
T

∑
t=1

E
[

E[ϕi {vi(t)zi(t)} |V;B,ρz]E
[

v j(t)zj(t)
∣∣V;B,ρz

] ∣∣ρV
]

= 0.

The second equality follows from the fact thatzi andzj are independent for fixedV.6

6. This unbiasedness in fact holds under a wider condition E[si(t)|sj(·), j 6= i] = 0.
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To prove condition (15) and compute the asymptotic variance (18), we calculate then2 × n2

matrixQ. If we use the non-holonomic basis dχ = dBB−1 (Amari et al., 2000),Q is expressed as

Q = E

[
∂vec(F̄QML)

∂vec(χ)

∣∣∣∣B,ρz,ρV

]
B̄−1,

whereB̄ = (B̄i j ;kl) and B̄i j ;kl = δikbl j . Fortunately, the matrix E
[

∂vec(F̄QML)
∂vec(χ)

]
turns out to have a

simple structure such that only the following 2n2−n components are non-zero,

E

[
∂F̄QML

ii

∂χii

]
= −

T

∑
t=1

E[mi{vi(t)} ]−T,




E

[
∂F̄QML

i j

∂χi j

]
E

[
∂F̄QML

i j

∂χ ji

]

E

[
∂F̄QML

ji

∂χi j

]
E

[
∂F̄QML

ji

∂χ ji

]




= −




T
Σ

t=1
E[ki{vi(t)}v2

j (t) ] T

T
T
Σ

t=1
E[k j{v j(t)}v2

i (t) ]


 ,

in which we employed the following quantities

ki{vi(t)} = E[ ϕ̇i{vi(t)zi(t)} |V;B,ρz] ,

mi{vi(t)} = v2
i (t) E

[
ϕ̇i{vi(t)zi(t)}z2

i (t)
∣∣V;B,ρz

]
,

andϕ̇i is the derivative ofϕi . Hence, it is not difficult to check non-singularity of this matrix, and if
this is the case, the condition (15) holds. We can also explicitly calculate the inverse matrix

Q−1 = B̄
(

E
[

∂vec(F̄QML)
∂vec(χ)

])−1
that appears in the asymptotic variance (18), because we only have to

invert the 2×2 matrices.
Finally, the variance of the estimating function can be computed as

E
[
F̄QML

i j F̄QML
kl |B,ρz,ρV

]

=





∑
t,t ′

cov
[

ϕi{yi(t)}yi(t), ϕk{yk(t
′)}yk(t

′)
]
, i = j, k = l

∑
t

E
[

ϕi{yi(t)}ϕk{yk(t)}y2
j (t)

]
, j = l , i 6= j or k 6= l

∑
t

E[ϕi{yi(t)}yi(t)ϕ j{y j(t)}y j(t) ] , i = l , j = k, i 6= j

which is slightly more complicated than the standard ICA model. Summing up the discussion above,
we get the following theorem.

Theorem 3 Suppose that the conditions

T

∑
t=1

E[mi{vi(t)} ]+T 6= 0, ∀i, (27)

det




T
Σ

t=1
E[ki{vi(t)}v2

j (t) ] T

T
T
Σ

t=1
E[k j{v j(t)}v2

i (t) ]


 6= 0, ∀i 6= j, (28)
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and assumption (26) hold. Then the functionF̄QML(X,B) satisfies the conditions (14) – (16) and
becomes an estimating function. In that case, the quasi maximum likelihood estimatorB̂QML de-
rived from the equation̄FQML(X, B̂QML) = 0 is consistent regardless of the true nuisance functions
(ρ∗

z,ρ∗
V) under appropriate regularity conditions.

5.2 Stability of the Natural Gradient Learning

In neural networks and machine learning, online leaning is often preferred to batch learning because
of computational efficiency, less memory and adaptability (see, for example,Müller et al., 1998;
Murata et al., 2002). The natural gradient learning (Amari, 1998)

B(t +1) = B(t)+η(t)
[
I −ϕ{y(t)}y>(t)

]
B(t), (29)

is an online algorithm based on the quasi maximum likelihood method, wherey(t) = B(t)x(t) is the
current estimator of the sources andη(t) is an appropriate learning constant.

Following the discussion in Amari et al. (1997), we will study the stability of the natural gra-
dient learning for the variance-dependent BSS model. For the sake of simplicity, they analyzed a
continuous version of the algorithm (29)

Ḃ(t) = µ(t)
[
I −ϕ{y(t)}y>(t)

]
B(t), (30)

whereḂ(t) denotes time derivative of the matrixB(t), µ(t) = η(t)/τ and τ means the sampling
period. Suppose that the marginal distributions of the activity levelsv(t) are identical in time.
For example, when the sequenceV is generated from an AR process, this holds approximately
after it reaches the equilibrium distribution. Although the random variablesv(t)’s (activity levels)
have an identical marginal distribution in time, their realization can fluctuate fromtime to time and
weak nonstationary structures can be found in the observed signals. Unfortunately, it is difficult to
eliminate this rather strong assumption. If we apply the online algorithm (29) to data with highly
nonstationary variances like speech, the scale factor of the demixing matrixB changes substantially
from time to time and never converges. This makes the current stability analysisimpossible. It
might be possible to discuss these cases by considering only the equivalence class, but it is out of
the scope of the current paper.

In order to fix the scales of the sources, we impose constraints

E
[
ϕi{b>i x(t)} b>i x(t)

]
= 1, ∀i. (31)

Note that the marginal distribution ofx(t) is identical in timet and the equilibrium pointsB0 of the
equation (30) satisfy

E
[
I −ϕ{y0(t)}y>0 (t)

]
= 0, (32)

wherey0(t) = B0x(t). With a similar calculation as in Section 5.1, we can show that the function

FNG(x,B) = I −ϕ(y)y>

satisfies the unbiasedness condition (8) of estimating functions. This means that the true demixing
matrix B∗ satisfies the equilibrium equation (32), that is,B∗ becomes an equilibrium point of the
flow (30). However, it does not guaranteed thatB(t) converges toB∗ even locally.
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Let us fix the stochastic processV = {v(t), t ≥ 0} of the activity levels at first and consider the
conditional expected version of the learning equation

Ḃ(t) = µ(t) E
[

I −ϕ{y(t)}y>(t)
∣∣∣V

]
B(t).

By linearizing it at the equilibrium pointB∗, we have the variational equation

vec{δḂ(t)} = µ(t)
∂vec{ E

[
FNG(x(t),B∗)

∣∣V
]

B∗}

∂vec(B)
vec{δB(t)},

whereδB(t) is a small perturbation. Therefore, we have to check the eigenvalues of the operators
∂vec{ E[FNG(x(t),B∗) |V]B∗}

∂vec(B) for eacht ≥ 0. If all eigenvalues have negative real parts, then the equilib-
rium B∗ is asymptotically stable for the fixed activity levelsV. Since the matrix can be expressed
as

∂vec{ E
[

FNG(x(t),B∗)
∣∣V

]
B∗}

∂vec(B)
= B̄∗ ∂vec

(
E

[
FNG

∣∣V
])

∂vec(χ)
(B̄∗)−1, (33)

whereB̄∗ = (B̄∗
i j ;kl) = (δikb∗l j ), and derivative w.r.t.χ corresponds to the non-holonomic basis

dχ = dBB−1. Because the left hand side of (33) is a similar transformation of∂vec(E[FNG|V] )
∂vec(χ) , their

eigenvalues are the same. Fortunately, as is the case of the quasi maximum likelihood, the matrix
∂vec(E[FNG|V] )

∂vec(χ) has a simple structure such that only the following 2n2−n components are non-zero,

∂E[FNG
ii |V]

∂χii
= −mi{vi(t)}−1




∂E[FNG
i j |V]

∂χi j

∂E[FNG
i j |V]

∂χ ji

∂E[FNG
ji |V]

∂χi j

∂E[FNG
ji |V]

∂χ ji


 = −

(
ki{vi(t)}v2

j (t) 1
1 k j{v j(t)}v2

i (t)

)

Therefore, the matrix∂vec(E[FNG|V] )
∂vec(χ) at timet has eigenvalues only with negative real parts, if and

only if

mi{vi(t)}+1 > 0 (34)

ki{vi(t)} > 0 (35)

v2
i (t)v2

j (t)ki{vi(t)}k j{v j(t)} > 1 (36)

for all i, j (i 6= j).

Theorem 4 If the stochastic process V= {v(t), t ≥ 0} of the activity levels satisfies the conditions
(34) – (36) with probability1 as for the true parameter(B∗,ρ∗

z,ρ∗
V), then the true demixing matrix

B∗ becomes an asymptotically stable equilibrium of the flow (30) with probability1.

Although asymptotic stability could be proved under weaker conditions, we summarize the
discussion as Theorem 4 for simplicity. In order to understand the result better, we revisit the
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examples presented in Amari et al. (1997). The conditions turn out to be much harder than those by
Amari et al. (1997) because of the fluctuating activity levels.

Example 1.Let us consider the following odd activation function

ϕi(yi) = |yi |
psign(yi)

for p = 1,2, . . .. The conditions (34) and (35) are automatically satisfied for any fixedvi(t) > 0.

mi{vi(t)} = pvp+1
i (t) E

[
|zi(t)|

p+1]
> 0

ki{vi(t)} = pvp−1
i (t) E

[
|zi(t)|

p−1]
> 0

The condition (36) becomes

p2vp+1
i (t)vp+1

j (t) E
[
|zi(t)|

p−1] E
[
|zj(t)|

p−1] > 1.

By introducing Gray’s norm

γpi =
E[ |zi |

p+1]

E[ |zi |2]E[ |zi|p−1]

and taking notice of the normalization constraints (31), that is, E[ |zi |
p+1] =

(
E[vp+1

i ]
)−1

, finally we

obtain

γpiγp j < p2
min

t
vp+1

i (t)

E[vp+1
i ]

min
t

vp+1
j (t)

E[vp+1
j ]

.

For the cubic functionϕi(yi) = y3
i , not as in the ICA model, the condition that all signals are sub-

Gaussian

γ3i =
E[ |zi|

4]
(
E[ |zi |

2]
)2 < 3

is not enough, but the variation of activity levelsvi from (1) should be taken into account.

Example 2.Let us consider a symmetrical sigmoidal function

ϕi(yi) = tanh(βyi).

The conditions (34) and (35) can be checked easily. Unfortunately, in this case we can only do a
rather coarse analysis as follows. Let us assumeβ � 1 so that the approximation

ϕi(yi) ≈ βyi −
1
3
(βyi)

3 +
2
15

(βyi)
5

holds with high probability. Then, we can express the condition (36) as

β2v2
i (t)v2

j (t) E

[
1− (βyi)

2 +
2
3
(βyi)

4

∣∣∣∣V
]

E

[
1− (βy j)

2 +
2
3
(βy j)

4

∣∣∣∣V
]

> 1.

Because 1− t2 +2t4/3 > t4/3, we get a stronger condition

β10

9
v2

i (t)v2
j (t) E

[
y4

i

∣∣V
]

E
[
y4

j

∣∣V
]
> 1.
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From a rough approximation of (31), the relationβ ≈
(
E[v2

i ]
)−1

is derived. Therefore, if all approx-
imations are accurate enough, we finally get a sufficient condition of (36)like

γ3iγ3 j >
9
β4


 E[v2

i ]

min
t

v2
i




3
 E[v2

j ]

min
t

v2
j




3

.

In contrast to the ordinal ICA model without variance dependence, the condition that all signals are
super-Gaussian may not be enough, but each kurtosisγ3i should be much larger than 3.7

5.3 Properties of Other BSS Algorithms

Although we concentrated on estimating functions of the form (20), we can deal with more general
functions and investigate other ICA algorithms within the framework of estimating functions and
asymptotic estimating functions (see also Cardoso, 1997). Such analysis helps to check whether
these algorithms may give valid solutions regardless of the nuisance densities(ρz,ρV). We re-
mark that our extension enables us to analyze algorithms based on temporal structure such as TD-
SEP/SOBI (Ziehe and M̈uller, 1998; Belouchrani et al., 1997). Since it is quite technical, the de-
tailed discussion is put in Appendix A, where the unbiasedness condition (14) of estimating func-
tions is examined for these algorithms under the variance-dependent BSS model. We briefly sum-
marize the consequences in Table 2. Estimators by all algorithms listed below arederived from
estimating equations which satisfy the unbiasedness condition at least asymptotically. When the
other conditions are taken into account, TDSEP/SOBI never works for thevariance-dependent BSS
model, because sources have no lagged auto-correlations. ICA algorithms using non-Gaussianity
such as FastICA and JADE are not working, if sources are Gaussian.The double blind algorithm
(Hyvärinen and Hurri, 2004) cannot be applied to the case where the variance structures of sources
are the same or there is no temporal variance-dependency. The nonstationary algorithm by Pham
and Cardoso (2000) is not applicable to the case where time courses of theactivity levels are pro-
portional to each other. Of course, such a theoretical analysis tells us only about the possibility of
failure. In practice, algorithms do not always return valid answers, because of local minima and
numerical instability of their learning process. Nevertheless, this theoretical analysis can explain
the results of our numerical experiments in the next section.

6. Numerical Experiments

We carried out experiments with several artificial and more realistic data setsfor several BSS al-
gorithms. The eight batch algorithms and the online versions of the quasi maximum likelihood
methods listed in Table 3 were applied to those data sets. Note that our goal is not primarily an
algorithm comparison but the experiments serve to demonstrate the correctness of our theoretical
analysis.

For evaluating the results, we used the index defined by Amari et al. (1996)

AmariIndex(B,A∗) =
n

∑
i=1

{
∑n

j=1 |Ci j |

maxk |Cik|
−1

}
+

n

∑
j=1

{
∑n

i=1 |Ci j |

maxk |Ck j|
−1

}
,

7. This different result corrects a calculation in Amari et al. (1997).
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algorithm unbiasedness unavailable cases

FastICA yes Sources are Gaussian.
Hyvärinen (1999)

double blind asymptotically Variance structures are same or
Hyvärinen and Hurri (2004) there is no temporal variance-dependency.

JADE asymptotically Sources are Gaussian.
Cardoso and Souloumiac (1993)

TDSEP/SOBI yes always (since we consider here
Ziehe and M̈uller (1998) only the case without auto-correlations)
Belouchrani et al. (1997)

nonstationary yes Time course of the activity levels are
Pham and Cardoso (2000) proportional to each other.

Table 2: Availability of other ICA and BSS algorithms

QML(tanh) quasi maximal likelihood method with the hyperbolic tangent nonlinearity
QML(pow3) quasi maximal likelihood method with the cubic nonlinearity
Online(tanh) online version of QML(tanh) with learning rateη(t) = 0.1

(1+t/20)

Online(pow3) online version of QML(pow3) with learning rateη(t) = 0.25
(1+t/20)

’DoubleBlind’ the double blind algorithm by Hyv̈arinen and Hurri (2004)
JADE JADE algorithm
FastICA(tanh) FastICA with the hyperbolic tangent nonlinearity
FastICA(pow3) FastICA with the cubic nonlinearity
TDSEP/SOBI TDSEP/SOBI algorithm
’Sepagaus’ The ’sepagaus’ algorithm for nonstationary signals

by Pham and Cardoso (2000)

Table 3: ICA and BSS algorithms used in the experiments
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whereA∗ is the true mixing matrix andC = BA∗. If B= PD(A∗)−1 with a permutation matrixP and
a diagonal matrixD, then AmariIndex(B,A∗) = 0.

6.1 Artificial Data Sets

In all artificial data sets, five source signals of various types with lengthT = 10000 were generated
and data after multiplying a random 5×5 mixing matrix were observed. We made 100 replications
for each setting and compute the demixing matrix for each replication. The first data set was made
according to the experiments in Hyvärinen and Hurri (2004). The activity levelsv(t) were generated
from a multivariate AR(1) model, where outliers larger than three times standard deviations from
the means were reduced to these bounds. The normalized signalszi ’s were i.i.d. sub-Gaussian ran-
dom variables which are signed fourth-order roots of zero-mean uniform variables. The medians of
the 100 replications are summarized in the row ’arsubG’ of Table 4 with the measure of deviation
(3rd-quantile− 1st-quantile)/2. As was pointed out by Hyvärinen and Hurri (2004), only ’Double-
Blind’ gave small AmariIndex. Because the marginal distribution of the source signalsi(t) looks
like a Gaussian, all algorithms based on indices favouring non-Gaussianityfailed. Even though
the determinant in the left hand side of (28) is close to 0, all the assumptions are satisfied and the
local consistency theorem is still valid. However, this does not directly meanthat the estimated
demixing matrix converges globally to the true one. In this case, many local optimacan make the
algorithms fail. This could also be understood from the fact that the contrastfunctions based on
non-Gaussianity become almost flat and thus are very difficult to optimize. Inthe experiments, we
observed that part of the true sources were often extracted correctly.

Although all the algorithms except for ’DoubleBlind’ did not work for the first difficult exam-
ple, the theoretical study in principle tells that many ICA and BSS algorithms are also applicable
to the variance-dependent BSS problem. So in fact the failure of the algorithms except ’Double-
Blind’ can be solely explained by the particular choice of the data set which isin contrast to prior
findings in Hyv̈arinen and Hurri (2004). In the second example, uniform random variables were
used aszi ’s instead of sub-Gaussian ones. The marginal distribution of the sourcesignalsi(t) looks
Laplacian. Therefore, as was shown in the row ’aruni’ of Table 4, the algorithms QML(tanh) and
FastICA(tanh), which are suitable for super-Gaussian sources, always give correct answers. The
algorithms ’DoubleBlind’, JADE and FastICA(pow3) based on 4-th ordermoments also worked ex-
cept several failures due to outliers. We got admissible results by the nonstationary BSS algorithm
’Sepagaus’, if an appropriate smoothing window was chosen.

In the third and the fourth data, the activity levelsvi(t) are sinusoidal functions with different
frequencies.

vi(t) = 1+0.9sin

(
(13+ i)πt

8000

)
, i = 1, . . . ,5

For the normalized signalszi , Laplacian and the sub-Gaussian i.i.d. random variables were used
in the third and the fourth examples, respectively. In the super-Gaussiancase (the row ’sinsupG’
of Table 4), the six algorithms except QML(pow3) and TDSEP/SOBI worked properly. ’Sepa-
gaus’ showed best performance, and QML(tanh) and FastICA(tanh)based on the hyperbolic tan-
gent nonlinearity gave better results than ’DoubleBlind’, JADE and FastICA(pow3) with 4-th order
moments. On the other hand, in the sub-Gaussian case (the row ’sinsubG’ of Table 4), the six algo-
rithms except QML(tanh) and TDSEP/SOBI returned admissible results. ’Sepagaus’ also showed
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QML(tanh) QML(pow3) Online(tanh) Online(pow3) ’DoubleBlind’

ar subG 8.25 (1.85) 11.32 (2.84) 14.59 (2.29) 14.75 (2.32) 0.52 (0.10)
ar uni 0.30 (0.04) 27.77 (0.32) 0.51 (0.08) 23.40 (1.88) 0.70 (0.16)

sin supG 0.17 (0.02) 29.97 (0.26) 0.39 (0.05) 28.74 (0.96) 0.79 (0.13)
sin subG 19.21 (0.24) 0.32 (0.05) 21.51 (2.08) 0.57 (0.30) 0.27 (0.03)
com supG 0.39 (0.06) 28.37 (0.27) 0.64 (0.09) 25.67 (1.74) 6.45 (1.56)
com subG 26.53 (0.55) 0.14 (0.02) 27.00 (2.41) 0.28 (0.05) 22.05 (1.96)
exp supG 0.35 (0.05) 28.43 (0.45) 0.59 (0.07) 22.84 (2.06) 7.63 (1.88)
uni subG 27.38 (0.17) 0.13 (0.02) 27.24 (1.27) 0.27 (0.04) 18.56 (1.66)

sss 0.03 3.82 0.06 (0.01) 2.79 (0.53) 0.02
v12 0.01 3.73 0.06 2.89 (0.04) 0.21

JADE FastICA(tanh) FastICA(pow3) TDSEP/SOBI ’Sepagaus’

ar subG 10.79 (1.88) 9.25 (1.98) 12.52 (2.05) 15.07 (1.96) 1.19 (0.48)
ar uni 0.66 (0.14) 0.38 (0.05) 0.73 (0.14) 14.92 (2.37) 0.85 (0.22)

sin supG 0.43 (0.07) 0.23 (0.03) 0.41 (0.07) 15.31 (2.04) 0.08 (0.01)
sin subG 0.31 (0.04) 0.68 (0.14) 0.33 (0.05) 15.70 (1.94) 0.08 (0.01)
com supG 0.84 (0.16) 0.48 (0.07) 0.87 (0.14) 16.02 (2.05) 1.28 (0.19)
com subG 26.49 (0.86) 27.04 (0.38) 26.65 (0.17) 16.23 (2.01) 27.08 (0.40)
exp supG 1.24 (0.23) 0.44 (0.06) 1.20 (0.22) 16.47 (1.81) 1.28 (0.20)
uni subG 0.17 (0.03) 0.18 (0.03) 0.18 (0.03) 16.20 (1.78) 27.08 (0.33)

sss 0.02 0.19 (0.04) 0.09 (0.01) 0.01 0.01
v12 0.19 0.17 (0.02) 0.08 (0.09) 0.14 0.01

Table 4: AmariIndex of the estimators. The values are the medians of 100 replications with the
measure of deviation,(3rd-quantile−1st-quantile)/2

best performance, and all four algorithms with 4-th order moments showed better performance than
the FastICA(tanh).

The double blind algorithm (’DoubleBlind’) by Hyv̈arinen and Hurri (2004) does not work
when (i) allvi ’s have same temporal structure, and (ii) there exist no temporal dependencies invi ’s.
’Sepagaus’ does not have a guarantee to separate sources either, because smoothed sequences of the
activity levels are nearly proportional to each other (see Table 2). The fifth and sixth data set are
examples of the case (i), wherevi(t) are the same sinusoidal functions.

vi(t) = 1+0.9sin
( πt

500

)
, i = 1, . . . ,5

As in the third and the fourth examples, Laplace and the sub-Gaussian i.i.d. random variables were
used for the normalized signalszi . As in the row ’comsupG’ of Table 4, the five algorithms ex-
cept QML(pow3), ’DoubleBlind’ and TDSEP/SOBI worked properly. Among them, QML(tanh)
and FastICA(tanh) had better performance. ’DoubleBlind’ gave poor results, because the matrix
K̃i j = ĉov{s2

i (·),s
2
j (· −1)} is almost singular. In the sub-Gaussian case, it looks quite difficult to

distinguish the sources visually. Unfortunately, we could not demix them correctly except with
QML(pow3) as shown in the row ’comsubG’ of Table 4. In order to check why other algorithms
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with the local consistency did not work, we carried out extra experiments with larger sample size
T. WhenT = 200000, the AmariIndices of the estimated demixing matrices by JADE are below
0.11, 92 times out of 100 repetition. On the other hand, both FastICA methods returned valid re-
sults almost always (AmariIndices are below 0.22, 89 times for FastICA(tanh) and 100 times for
FastICA(pow3) ), ifT = 50000 and the algorithms start from the true demixing matrix. Therefore,
we think that the global convergence is not achieved in these cases, because of finite sample size
effects and local optima.

The seventh and the eighth data sets are examples of the case (ii), wherev(t) is i.i.d. in timet. In
the former example, we transform 5 independent exponential random variables linearly such thatvi

andv j have correlation 0.9, andzi ’s were i.i.d Laplace random variables. On the other hand, in the
latter example,v(t) was generated from 5 uniform random variables by the same linear transforma-
tion andzi ’s were the i.i.d sub-Gaussian random variables. As one can see in the row’exp supG’ of
Table 4, the results are similar to the data set ’comsupG’. On the other hand, in the sub-Gaussian
case summarized in the row ’unisubG’ of Table 4, QML(pow3), JADE, FastICA(tanh) and Fas-
tICA(pow3) gave correct results, but ’Sepagaus’ showed very poor performance. We remark that in
both cases, ’DoubleBlind’ did not work as was expected.

We would now like to digest the results from Table 4 and relate them to our theoretical find-
ings. We have shown that all algorithms except for TDSEP/SOBI have the local consistency for
most of the given data. However, this does not directly mean that they converge globally to the true
solution. Although we hope that algorithms with a local consistency work properly, we sometimes
see significant deviations from this expectation in practice as in Table 4. Thealgorithmic failures
are caused by local optima as pointed out above for the data set ’arsubG’, or more importantly to
numerical stability and convergence issues. For example, since learning algorithms like gradient
descent are used for QML(tanh) and QML(pow3), desired solutions (equilibria) turn out to be in-
stable for sub-Gaussian (QML(tanh)) and super-Gaussian signals (QML(pow3)). In our data sets,
’ar uni’, all data sets with ’supG’ and acoustic signals are super-Gaussian,while all data sets with
’subG’ except ’arsubG’ are sub-Gaussian. One can see the clear pattern in the columns QML(tanh)
and QML(pow3). The online version Online(tanh) and Online(pow3) hadslightly degraded per-
formance with appropriate learning rate, if the batch version QML(tanh) and QML(pow3) worked,
respectively. On the other hand, although FastICA uses similar criteria fornon-Gaussianity, it em-
ploys a kind of Newton’s method and so the desired solutions are automatically better stabilized. In
the columns FastICA(tanh) and FastICA(pow3), except for the difficultcase ’comsubG’ and nearly
Gaussian case ’arsubG’, both algorithms succeeded.

6.2 Variance-Dependent Speech Signals

Next we will deal with more realistic data sets. Speech and audio signals haveoften been used
as sourcess(t) even for experiments of the instantaneous ICA model. In order to check whether
variance-dependency matters to many ICA and BSS algorithms, we applied BSS algorithms to
speech signals which have strong variance-dependency.

In the first experiments ’sss’,8 we took two speech signals with lengthT = 120976, where
one speaker says digits from 1 to 10 in English, and the other speaker counts at the same time in
Spanish. We used the separated signals of their second demo as the sources, because their separation
quality is good enough. Figure 2 shows the sources and the estimators of their activity levels with

8. The signals were downloaded fromhttp://inc2.ucsd.edu/ ˜ tewon/ .
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an appropriate smoother. We inserted one short pause at different positions of both sequences to
make correlation of the activity levels of the modified signals much larger (0.65). In the second
experiments ’v12’,9 we took two speech signals from Japanese text (T = 48000). Figure 3 shows
the sources and the estimators of the activity levels. We extended and shorten each syllable of the
second sequence and tuned its amplitude such that the two sources have high variance-dependency.
Correlation of the activity levels of the arranged signals becomes 0.74.

40000  80000 120000

2

1

40000  80000 120000
2

1

Figure 2: The sources of the data set ’sss’ and the estimators of their activity levels. The upper
panel contains the signals showing counting from 1 to 10 in English and Spanish. The
lower panel shows their activity levels with an appropriate smoother.

10000 20000 30000 40000

2

1

10000 20000 30000 40000
2

1

Figure 3: The sources of the data set ’v12’ and the estimators of their activity levels. The upper
panel are signals from Japanese sentences. The lower panel showstheir activity levels
with an appropriate smoother.

A 2×2 mixing matrixA was randomly generated 100 times and 100 different mixtures of the
source signals were made. The results are summarized in the rows ’sss’ and ’v12’ of Table 4. In

9. The signals can be downloaded byhttp://www.islab.brain.riken.go.jp/ ˜ mura/ica/v1.wav andv2.wav .

473



KAWANABE AND M ÜLLER

both experiments, QML(tanh), JADE, TDSEP/SOBI and ’Sepagaus’ always worked, while Fas-
tICA(tanh) and FastICA(pow3) gave admissible results except for several cases. Although TD-
SEP/SOBI is not applicable to the variance-dependent BSS model, it also returned correct results.
This means that the speech signals are not perfectly matching the model Eq. (4), but the sources
have furthermore a lagged autocorrelation. QML(tanh) always returned wrong answers, because
speech is usually super-Gaussian.

7. Conclusions

In this paper, we discussed semiparametric estimation for blind source separation, when sources
have variance dependencies. Hyvärinen and Hurri (2004) introduced the double blind setting where,
in addition to source distributions, dependencies between components are not restricted by any
parametric model. In the presence of these two nuisance parameters (densities of activity level and
underlying signal), they proposed an algorithm based on lagged 4-th order cumulants. Although
their algorithm works well in many cases, it fails if (i) allvi ’s have similar temporal structure, or (ii)
there exist no temporal dependencies invi ’s. Furthermore it also suffers from outliers.

Extending the semiparametric approach (Amari and Cardoso, 1997) under variance dependen-
cies, we investigated estimating functions for the variance-dependent BSSmodel. In particular, we
proved that the quasi maximum likelihood estimator is derived from an estimating function, and is
hence consistent regardless of the true nuisance densities (which satisfy certain mild conditions).
We also analyzed other ICA algorithms within the framework of (asymptotic) estimating functions
and showed that many of them can separate sources with coherent variances. This is in contrast
to previous understanding of the mechanisms underlying ICA algorithms. Theoretically we have
shown that at least asymptotically all BSS algorithms except for TDSEP/SOBIhave the local con-
sistency, thus they should succeed on a given mixed data. However, local consistency does not
necessarily guarantee global convergence to the true solution and we sometimes see significant de-
viations from this expectation in practice. The algorithmic failures are due to many local optima
and more importantly due to numerical stability and convergence issues.

Although almost all ICA and BSS algorithms could not give correct answers in the numerical
experiment of Hyv̈arinen and Hurri (2004), we showed here that this was mainly a matter of the
specific choice of the data set. In fact, most ICA and BSS algorithms also work well in many other
benchmark examples that use dependent data. In particular, we carriedout two experiments with
highly variance-dependent speech signals. Despite the dependence typically found in speech, most
ICA and BSS algorithms yield excellent separation results and our theoretical analysis can help
to understand the reason for this fact. We conjecture that it is not the coarse amplitude structure
(e.g. from dependence) that matters for BSS but the statistical fine structure of the signals.

In this paper, we only tested existing ICA and BSS algorithms and pointed out that some of
them are applicable to the variance-dependent BSS model. Future research will go one step further
and construct more efficient or robust semiparametric algorithms. Note alsothat in practice, it is
important to analyze how to select the best BSS method for a specific, say, variance-dependent data
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set. We think that suitable methods might be developed along the lines of Meinecke et al. (2002) or
Harmeling et al. (2004).
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Appendix A. Comments on Other Selected BSS Algorithms

We will discuss in the following the local consistency of ICA/BSS algorithms except the quasi
maximum likelihood method.

A.1 FastICA

FastICA is one of the standard algorithms for blind source separation. Letu(t) = C−1/2x(t) be the
whitened data, whereC = 1

T ∑T
t=1x(t)x>(t) is the sample covariance. FastICA gives the demixing

matrixW = (w1, . . . ,wn)
> which maximizes the total non-Gaussianity

n

∑
i=1

1
T

T

∑
t=1

G{w>
i u(t)}

under the orthogonality conditionWW> = I . We use, in the following the notationW for the demix-
ing matrix after whitening in order to distinguish it from the total demixing matrixB = WC−1/2

including whitening process. HereG is a nonlinear function which is introduced to approximate the
negentropy (Hyv̈arinen et al., 2001b). By solving the constrained optimization problem, we seethat
the estimator ofW must satisfy the estimating equation

T

∑
t=1

[
y(t)y>(t)− I +y(t)g>{y(t)}−g{y(t)}y>(t)

]
= 0 (37)

wherey(t) = Wu(t). If we write the total demixing matrix asB = WC−1/2, y(t) can be expressed as
Bx(t). The vector functiong(y) consists of the derivativesg(yi)= G′(yi), that is,g(y)= (g(y1), . . . ,g(yn))>.
The functions (12) and (13) are also used as the functiong. We remark that the equation (37) is
equivalent to

T

∑
t=1

[
y(t)g>{y(t)}−g{y(t)}y>(t)

]
= 0, (38)

T

∑
t=1

[
y(t)y>(t)− I

]
= 0, (39)
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because the left hand side of (38) is antisymmetric, while that of (39) is symmetric. If we determine
the scales of the sources such that

E

[
T

∑
t=1

{b>i x(t)}2

∣∣∣∣∣B,ρz,ρV

]
= T, i = 1, . . . ,n, (40)

then it is easy to show that the expectations of the left hand side of (38) and(39) vanish regardless
of the nuisance functionsρz andρV , in the same way as for the quasi maximum likelihood method.
This means that the left hand side of (37) satisfies the unbiasedness condition (14) of estimating
functions. If the other regularity conditions hold, it becomes an estimating function and the esti-
matorB̂ derived from it converges to the correct demixing matrixB∗ = (A∗)−1 with a permutation
matrix P and a diagonal matrixD. Although the estimating function is similar to that of the quasi
maximum likelihood, FastICA algorithm is based on the Newton’s algorithm, and therefore, it has
globally more stable dynamics than the natural gradient learning.

A.2 The Double Blind Algorithm by Hyv ärinen and Hurri (2004)

Hyvärinen and Hurri (2004) proposed an algorithm for separating sources under the double blind
situation. The estimator is obtained by maximizing

J(W) = ∑
i, j

[
ĉov{y2

i (·),y
2
j (·−∆t)}

]2
,

under the orthogonality conditionWW> = I , where

ĉov{y2
i (·),y

2
j (·−∆t)} =

1
T −∆t

T

∑
t=∆t+1

y2
i (t)y

2
j (t −∆t)−1.

Let us assume that

ĉum{si(·),sj(·),sk(·−∆t),sl (·−∆t)}

:=
1

T −∆t

T

∑
t=∆t+1

si(t)sj(t)sk(t −∆t)sl (t −∆t)−
1

T2

T

∑
t=1

si(t)sj(t)
T

∑
t=1

sk(t)sl (t)

−
1

(T −∆t)2

T

∑
t=∆t+1

si(t)sk(t −∆t)
T

∑
t=∆t+1

sj(t)sl (t −∆t)

−
1

(T −∆t)2

T

∑
t=∆t+1

si(t)sl (t −∆t)
T

∑
t=∆t+1

sj(t)sk(t −∆t)

=

{
Kik +op(1), i = j, k = l
op(1), otherwise

that is, the empirical cumulants of the source signals(t) = (A∗)−1x(t) converge to their expectation,
where

Ki j =
1

T −∆t

T

∑
t=∆t+1

E
[
s2
i (t)s

2
j (t −∆t)

]
−

1
T2

T

∑
t=1

E
[
s2
i (t)

] T

∑
t=1

E
[
s2

j (t)
]
.
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By ignoring higher-order terms, we get

J = ∑
i, j,k,l

(q2
ikKklq

2
jl )

2

whereQ = (qi j ) = BA∗ andB = WC−1/2 indicates the demixing matrix without whitening. Pro-
vided that the matrixK = (Ki j ) is non-singular, the quantityJ is maximized whenQ is a signed
permutation matrix, that is, by maximizing the criterionJ we can estimate the true demixing ma-
trix B∗ = (A∗)−1 up to signed permutation matrices. This also means that the algorithm does not
work if there is no temporal covariance dependencies (for example, the data sets ’expsupG’ and
’uni subG’ in our experiment), or all sources have exactly same temporal covariance dependencies
(for example, the data sets ’comsupG’ and ’comsubG’ in our experiment).

Although the authors have already given its validity as mentioned above, we will check its
estimating equation. By solving the constrained optimization problem, we see that the estimator is
obtained from the estimating equation

F̂(X, B̂) = 0, (41)

where

F̂i j (X,B) =
T

∑
t=1

{yi(t)y j(t)−δi j}+
T

∑
t=∆t+1

[
∑
l

(K̂il − K̂ jl )y
2
l (t −∆t)yi(t)y j(t)

+∑
l

(K̂li − K̂l j )y
2
l (t)yi(t −∆t)y j(t −∆t)

]
. (42)

andK̂i j = ĉov{y2
i (·),y j(·−∆t)}. By replacingK̂i j with Ki j , let us define the function

Fi j (X,B) =
T

∑
t=1

{yi(t)y j(t)−δi j}+
T

∑
t=∆t+1

[
∑
l

(Kil −K jl )y
2
l (t −∆t)yi(t)y j(t)

+∑
l

(Kli −Kl j )y
2
l (t)yi(t −∆t)y j(t −∆t)

]
. (43)

Suppose thatF(X,B) is an estimating function which fulfillsF(X,B) = Op(T1/2), whenB is the
true parameter. If the function̂F(X,B) satisfies

F̂(X, B̃) = F(X, B̃)+op(T
1/2) (44)

for any B̃ such that‖B̃−B‖ = O(T−1/2), it can be shown that the residual does not matter to
the asymptotic property of the estimator and the solutionB̂ of (41) is asymptotically equivalent
to that of the equationF(X,B) = 0 (see Cardoso, 1997). In fact, we can prove (44) under mild
conditions, that is, the difference between the functions (42) and (43) can be neglected. Therefore,
we will check whetherF(X,B) actually satisfies the conditions of estimating functions. If we take
the constraints (40) to determine the scales of the sources, the unbiasedness condition (14) follows
from uncorrelatedness of the sources and

T

∑
t=∆t+1

∑
l

(Kil −K jl )E
[
y2

l (t −∆t)yi(t)y j(t)
]

=
T

∑
t=∆t+1

∑
l

(Kil −K jl )E
[
v2

l (t −∆t)vi(t)v j(t)
]

E
[
z2
l (t −∆t)

]
E[zi(t)zj(t)] = 0,
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T

∑
t=∆t+1

∑
l

(Kli −Kl j )E
[
y2

l (t)yi(t −∆t)y j(t −∆t)
]

=
T

∑
t=∆t+1

∑
l

(Kli −Kl j )E
[
v2

l (t)vi(t −∆t)v j(t −∆t)
]

E
[
z2
l (t)

]
E[zi(t −∆t)zj(t −∆t)]

= 0.

We remark that the expectations are taken with respect top(X|B,ρz,ρV), and therefore
y(t) = Bx(t) = s(t) holds. If the other regularity condition holds,F̂(X,B) turns out to be an asymp-
totic estimating function which is asymptotically equivalent to an estimating function and the esti-
matorB̂ converges to the correct demixing matrixB∗ = (A∗)−1.

A.3 JADE

Although in a rigorous sense, the asymptotic properties of JADE should be analyzed as in the
previous section (see also Cardoso, 1997), its consistency can be shown more easily (as suggested
by one of the anonymous reviewers). Suppose that the contrast function of JADE

JJADE(W) = ∑
i jkl 6=iikl

|ĉum(yi ,y j ,yk,yl )|
2

uniformly converges to the ideal contrast function

J∗JADE(W) = ∑
i jkl 6=iikl

|cum(yi ,y j ,yk,yl )|
2

on the set of orthogonal matricesW such thatWW> = I , whereĉum and cum denote the empirical
and the expected cumulant tensor, respectively. Then, the minimum of theJJADE(W) converges
to that ofJ∗JADE(W). If W is the true demixing matrix andyi ’s are extracted signals withW, the
componentsKi jkl := cum(yi ,y j ,yk,yl ) of the expected cumulant are zero except fori = j = k = l or
i = j 6= k= l or i = l 6= j = k. Thus, one needs only to show that the estimating equation is associated
to the minimization of 2∑

i 6= j

|cum(yi ,y j ,yi ,y j)|
2 under the orthogonality constraints which is satisfied

whenyi equals the true sources (up to a scaling and a permutation). The estimating equation is

T

∑
t=1



E[yi(t)y j(t)]−δi j

+ ∑
k6=i

KikikE[y2
k(t)yi(t)y j(t)]− ∑

k6= j

K jk jkE[y2
k(t)yi(t)y j(t)]

}
= 0, (45)

which can be seen to be satisfied, whenyi ’s equal to the true sources. We remark that the same
formula as (45) can be obtained after the rigorous analysis. The functionwhich is associated with
the asymptotic estimating function (see (43)) becomes

Fi j (X,W) =
T

∑
t=1

{
yi(t)y j(t)−δi j + ∑

k6=i

Kikiky2
k(t)yi(t)y j(t)− ∑

k6= j

K jk jky2
k(t)yi(t)y j(t)

}
.
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A.4 TDSEP/SOBI

Let us define lagged covariance matrices ofx(t)

R(∆t) =
1
T

T

∑
t=∆t+1

E
[
x(t)x>(t −∆t)

]

= A∗

{
1
T

T

∑
t=∆t+1

E
[
s(t)s>(t −∆t)

]}
(A∗)>.

When the sourcessi ’s are mutually independent and have temporal covariance structure, thedemix-
ing matrixPD(A∗)−1 can diagonalize all lagged covariance matricesR(∆t), where P is a permutation
matrix and D is a diagonal matrix. This property has been used in blind separation methods with
second order statistics (Tong et al., 1991; Belouchrani et al., 1997; Ziehe and M̈uller, 1998).

In the variance-dependent BSS model, for anyi, j, t and∆t ≥ 1,

E[si(t)sj(t −∆t)] = E[vi(t)v j(t −∆t)] E[zi(t)zj(t −∆t)] = 0.

Therefore,R(∆t) = 0 for ∆t ≥ 1, that is, we cannot get any information about the mixing matrixA
from lagged covariance matricesR(∆t). This is why TDSEP does not work for this model.
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