One-Shot-Learning Gesture Recognition using HOG-HOF Features

Jakub Konecny, Michal Hagara; 15(Jul):2513−2532, 2014.

Abstract

The purpose of this paper is to describe one-shot-learning gesture recognition systems developed on the ChaLearn Gesture Dataset (ChaLearn). We use RGB and depth images and combine appearance (Histograms of Oriented Gradients) and motion descriptors (Histogram of Optical Flow) for parallel temporal segmentation and recognition. The Quadratic-Chi distance family is used to measure differences between histograms to capture cross-bin relationships. We also propose a new algorithm for trimming videos---to remove all the unimportant frames from videos. We present two methods that use a combination of HOG-HOF descriptors together with variants of a Dynamic Time Warping technique. Both methods outperform other published methods and help narrow the gap between human performance and algorithms on this task. The code is publicly available in the MLOSS repository.

[abs][pdf][bib]




Home Page

Papers

Submissions

News

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Statistics

Login

Contact Us



RSS Feed