On the Equivalence between Kernel Quadrature Rules and Random Feature Expansions

Francis Bach; 18(21):1−38, 2017.


We show that kernel-based quadrature rules for computing integrals can be seen as a special case of random feature expansions for positive definite kernels, for a particular decomposition that always exists for such kernels. We provide a theoretical analysis of the number of required samples for a given approximation error, leading to both upper and lower bounds that are based solely on the eigenvalues of the associated integral operator and match up to logarithmic terms. In particular, we show that the upper bound may be obtained from independent and identically distributed samples from a specific non-uniform distribution, while the lower bound if valid for any set of points. Applying our results to kernel-based quadrature, while our results are fairly general, we recover known upper and lower bounds for the special cases of Sobolev spaces. Moreover, our results extend to the more general problem of full function approximations (beyond simply computing an integral), with results in $L_2$- and $L_\infty$-norm that match known results for special cases. Applying our results to random features, we show an improvement of the number of random features needed to preserve the generalization guarantees for learning with Lipshitz-continuous losses.


Home Page




Editorial Board



Open Source Software




Contact Us

RSS Feed