Characteristic and Universal Tensor Product Kernels

Zoltán Szabó, Bharath K. Sriperumbudur; 18(233):1−29, 2018.

Abstract

Maximum mean discrepancy (MMD), also called energy distance or N-distance in statistics and Hilbert-Schmidt independence criterion (HSIC), specifically distance covariance in statistics, are among the most popular and successful approaches to quantify the difference and independence of random variables, respectively. Thanks to their kernel-based foundations, MMD and HSIC are applicable on a wide variety of domains. Despite their tremendous success, quite little is known about when HSIC characterizes independence and when MMD with tensor product kernel can discriminate probability distributions. In this paper, we answer these questions by studying various notions of characteristic property of the tensor product kernel.

[abs][pdf][bib]




Home Page

Papers

Submissions

News

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Statistics

Login

Contact Us



RSS Feed