Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Approximation Hardness for A Class of Sparse Optimization Problems

Yichen Chen, Yinyu Ye, Mengdi Wang; 20(38):1−27, 2019.

Abstract

In this paper, we consider three typical optimization problems with a convex loss function and a nonconvex sparse penalty or constraint. For the sparse penalized problem, we prove that finding an $\mathcal{O}(n^{c_1}d^{c_2})$-optimal solution to an $n\times d$ problem is strongly NP-hard for any $c_1, c_2\in [0,1)$ such that $c_1+c_2<1$. For two constrained versions of the sparse optimization problem, we show that it is intractable to approximately compute a solution path associated with increasing values of some tuning parameter. The hardness results apply to a broad class of loss functions and sparse penalties. They suggest that one cannot even approximately solve these three problems in polynomial time, unless P $=$ NP.

[abs][pdf][bib]       
© JMLR 2019. (edit, beta)

Mastodon