Tslearn, A Machine Learning Toolkit for Time Series Data
Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guillaume Androz, Chester Holtz, Marie Payne, Roman Yurchak, Marc Rußwurm, Kushal Kolar, Eli Woods; 21(118):1−6, 2020.
Abstract
tslearn is a general-purpose Python machine learning library for time series that offers tools for pre-processing and feature extraction as well as dedicated models for clustering, classification and regression. It follows scikit-learn's Application Programming Interface for transformers and estimators, allowing the use of standard pipelines and model selection tools on top of tslearn objects. It is distributed under the BSD-2-Clause license, and its source code is available at https://github.com/tslearn-team/tslearn.
[abs]
[pdf][bib] [code]© JMLR 2020. (edit, beta) |