Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Deletion Robust Non-Monotone Submodular Maximization over Matroids

Paul Dütting, Federico Fusco, Silvio Lattanzi, Ashkan Norouzi-Fard, Morteza Zadimoghaddam; 26(66):1−28, 2025.

Abstract

We study the deletion robust version of submodular maximization under matroid constraints. The goal is to extract a small-size summary of the data set that contains a high-value independent set even after an adversary deletes some elements. We present constant-factor approximation algorithms, whose space complexity depends on the rank $k$ of the matroid, the number $d$ of deleted elements, and the input precision $\varepsilon$. In the centralized setting we present a $(4.494+O(\varepsilon))$-approximation algorithm with summary size $O( \frac{k+d}{\varepsilon^2}\log \frac{k}{\varepsilon})$ that improves to a $(3.582+O(\varepsilon))$-approximation with $O(k + \frac{d}{\varepsilon^2}\log \frac{k}{\varepsilon})$ summary size when the objective is monotone. In the streaming setting we provide a $(9.294 + O(\varepsilon))$-approximation algorithm with summary size and memory $O(k + \frac{d}{\varepsilon^2}\log \frac{k}{\varepsilon})$; the approximation factor is then improved to $(5.582+O(\varepsilon))$ in the monotone case.

[abs][pdf][bib]       
© JMLR 2025. (edit, beta)

Mastodon