Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

A Unifying View of Sparse Approximate Gaussian Process Regression

Joaquin QuiƱonero-Candela, Carl Edward Rasmussen; 6(65):1939−1959, 2005.

Abstract

We provide a new unifying view, including all existing proper probabilistic sparse approximations for Gaussian process regression. Our approach relies on expressing the effective prior which the methods are using. This allows new insights to be gained, and highlights the relationship between existing methods. It also allows for a clear theoretically justified ranking of the closeness of the known approximations to the corresponding full GPs. Finally we point directly to designs of new better sparse approximations, combining the best of the existing strategies, within attractive computational constraints.

[abs][pdf][bib]       
© JMLR 2005. (edit, beta)

Mastodon