Next: About this document ...
Up: Lagrangian Support Vector Machines
Previous: Acknowledgements
- 1
-
D. P. Bertsekas.
Nonlinear Programming.
Athena Scientific, Belmont, MA, second edition, 1999.
- 2
-
P. S. Bradley and O. L. Mangasarian.
Feature selection via concave minimization and support vector
machines.
In J. Shavlik, editor, Machine Learning Proceedings of the
Fifteenth International Conference(ICML '98), pages 82-90, San
Francisco, California, 1998. Morgan Kaufmann.
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-03.ps .
- 3
-
P. S. Bradley and O. L. Mangasarian.
Massive data discrimination via linear support vector machines.
Optimization Methods and Software, 13:1-10, 2000.
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-03.ps .
- 4
-
V. Cherkassky and F. Mulier.
Learning from Data - Concepts, Theory and Methods.
John Wiley & Sons, New York, 1998.
- 5
-
N. Cristianini and J. Shawe-Taylor.
An Introduction to Support Vector Machines.
Cambridge University Press, Cambridge, 2000.
- 6
-
M. C. Ferris and T. S. Munson.
Interior point methods for massive support vector machines.
Technical Report 00-05, Computer Sciences Department, University of
Wisconsin, Madison, Wisconsin, May 2000.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-05.ps.
- 7
-
G. H. Golub and C. F. Van Loan.
Matrix Computations.
The John Hopkins University Press, Baltimore, Maryland, 3rd edition,
1996.
- 8
-
T. K. Ho and E. M. Kleinberg.
Checkerboard dataset, 1996.
http://www.cs.wisc.edu/math-prog/mpml.html.
- 9
-
ILOG, Inc.
ILOG CPLEX 6.5 Reference Manual.
ILOG CPLEX Division, Incline Village, Nevada, 1999.
- 10
-
T. Joachims.
SVM, 1998.
http://ais.gmd.de/~thorsten/svm_light.
- 11
-
T. Joachims.
Making large-scale support vector machine learning practical.
In Schölkopf et al. [25], pages 169-184.
- 12
-
L. Kaufman.
Solving the quadratic programming problem arising in support vector
classification.
In Schölkopf et al. [25], pages 147-167.
- 13
-
Y.-J. Lee and O. L. Mangasarian.
RSVM: Reduced support vector machines.
In Proceedings of the First SIAM International Conference on
Data Mining, 2001.
To appear. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-07.ps.
- 14
-
Yuh-Jye Lee and O. L. Mangasarian.
SSVM: A smooth support vector machine.
Computational Optimization and Applications, 2000.
To appear. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-03.ps.
- 15
-
O. L. Mangasarian.
Nonlinear Programming.
SIAM, Philadelphia, PA, 1994.
- 16
-
O. L. Mangasarian.
Generalized support vector machines.
In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages 135-146,
Cambridge, MA, 2000. MIT Press.
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-14.ps.
- 17
-
O. L. Mangasarian and D. R. Musicant.
Successive overrelaxation for support vector machines.
IEEE Transactions on Neural Networks, 10:1032-1037, 1999.
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-18.ps.
- 18
-
O. L. Mangasarian and D. R. Musicant.
Active support vector machine classification.
Advances in Neural Information Processing Systems (NIPS 2000),
2000.
To appear. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-04.ps.
- 19
-
O. L. Mangasarian and D. R. Musicant.
Data discrimination via nonlinear generalized support vector
machines.
In M. C. Ferris, O. L. Mangasarian, and J.-S. Pang, editors,
Complementarity: Applications, Algorithms and Extensions, pages 233-251,
Dordrecht, January 2001. Kluwer Academic Publishers.
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/99-03.ps.
- 20
-
O. L. Mangasarian and J. Ren.
New improved error bounds for the linear complementarity problem.
Mathematical Programming, 66:241-255, 1994.
- 21
-
O. L. Mangasarian and M. V. Solodov.
Nonlinear complementarity as unconstrained and constrained
minimization.
Mathematical Programming, Series B, 62:277-297, 1993.
- 22
-
P. M. Murphy and D. W. Aha.
UCI repository of machine learning databases, 1992.
http://www.ics.uci.edu/~mlearn/MLRepository.html.
- 23
-
D. R. Musicant.
NDC: Normally Distributed Clustered Datasets, 1998.
http://www.cs. wisc.edu/~musicant/data/ndc.
- 24
-
J. Platt.
Sequential minimal optimization: A fast algorithm for training
support vector machines.
In Schölkopf et al. [25], pages 185-208.
http://www.research.microsoft.com/~jplatt/smo.html.
- 25
-
B. Schölkopf, C. Burges, and A. Smola.
Advances in Kernel Methods: Support Vector Machines.
MIT Press, Cambridge, MA, 1999.
- 26
-
The MathWorks, Inc.
MATLAB User's Guide.
The MathWorks, Inc., Natick, MA 01760, 1994-2001.
- 27
-
The MathWorks, Inc.
MATLAB Solution Number 1913: Can one session of MATLAB take
advantage of multiple processors on the same PC or UNIX machine?, 2000.
http://www.mathworks.com/support/solutions/data/1913.shtml.
- 28
-
V. N. Vapnik.
The Nature of Statistical Learning Theory.
Springer, New York, 1995.
Journal of Machine Learning Research