Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Sparse and low-rank multivariate Hawkes processes

Emmanuel Bacry, Martin Bompaire, Stéphane Gaïffas, Jean-Francois Muzy; 21(50):1−32, 2020.

Abstract

We consider the problem of unveiling the implicit network structure of node interactions (such as user interactions in a social network), based only on high-frequency timestamps. Our inference is based on the minimization of the least-squares loss associated with a multivariate Hawkes model, penalized by $\ell_1$ and trace norm of the interaction tensor. We provide a first theoretical analysis for this problem, that includes sparsity and low-rank inducing penalizations. This result involves a new data-driven concentration inequality for matrix martingales in continuous time with observable variance, which is a result of independent interest and a broad range of possible applications since it extends to matrix martingales former results restricted to the scalar case. A consequence of our analysis is the construction of sharply tuned $\ell_1$ and trace-norm penalizations, that leads to a data-driven scaling of the variability of information available for each users. Numerical experiments illustrate the significant improvements achieved by the use of such data-driven penalizations.

[abs][pdf][bib]        [code]
© JMLR 2020. (edit, beta)

Mastodon