Convergences of Regularized Algorithms and Stochastic Gradient Methods with Random Projections
Junhong Lin, Volkan Cevher; 21(20):1−44, 2020.
Abstract
We study the least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space as a special case. We first investigate regularized algorithms adapted to a projection operator on a closed subspace of the Hilbert space. We prove convergence results with respect to variants of norms, under a capacity assumption on the hypothesis space and a regularity condition on the target function. As a result, we obtain optimal rates for regularized algorithms with randomized sketches, provided that the sketch dimension is proportional to the effective dimension up to a logarithmic factor. As a byproduct, we obtain similar results for Nystr\"{o}m regularized algorithms. Our results provide optimal, distribution-dependent rates that do not have any saturation effect for sketched/Nystr\"{o}m regularized algorithms, considering both the attainable and non-attainable cases, in the well-conditioned regimes. We then study stochastic gradient methods with projection over the subspace, allowing multi-pass over the data and minibatches, and we derive similar optimal statistical convergence results.
[abs]
[pdf][bib]© JMLR 2020. (edit, beta) |