Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Convolutional Nets and Watershed Cuts for Real-Time Semantic Labeling of RGBD Videos

Camille Couprie, Clément Farabet, Laurent Najman, Yann LeCun; 15(102):3489−3511, 2014.

Abstract

This work addresses multi-class segmentation of indoor scenes with RGB-D inputs. While this area of research has gained much attention recently, most works still rely on hand-crafted features. In contrast, we apply a multiscale convolutional network to learn features directly from the images and the depth information. Using a frame by frame labeling, we obtain nearly state-of-the-art performance on the NYU-v2 depth data set with an accuracy of 64.5%. We then show that the labeling can be further improved by exploiting the temporal consistency in the video sequence of the scene. To that goal, we present a method producing temporally consistent superpixels from a streaming video. Among the different methods producing superpixel segmentations of an image, the graph-based approach of Felzenszwalb and Huttenlocher is broadly employed. One of its interesting properties is that the regions are computed in a greedy manner in quasi-linear time by using a minimum spanning tree. In a framework exploiting minimum spanning trees all along, we propose an efficient video segmentation approach that computes temporally consistent pixels in a causal manner, filling the need for causal and real-time applications. We illustrate the labeling of indoor scenes in video sequences that could be processed in real-time using appropriate hardware such as an FPGA.

[abs][pdf][bib]       
© JMLR 2014. (edit, beta)

Mastodon