Home

Papers

Submissions

Submission guidelines and editorial policies

Acceptance criteria

Author guidelines

Reviewer guidelines

Action Editor guidelines

Ethics guidelines

Code of conduct

Editorial board

Expert Reviewers

Contact

Frequently Asked Questions

Journal of Machine Learning Research (JMLR)

Proceedings of Machine Learning Research (PMLR)

Data-centric Machine Learning Research (DMLR)

Transactions on Machine Learning Research

Transactions on Machine Learning Research (TMLR) is a new venue for dissemination of machine learning research that is intended to complement JMLR while supporting the unmet needs of a growing ML community. TMLR emphasizes technical correctness over subjective significance, to ensure that we facilitate scientific discourse on topics that may not yet be accepted in mainstream venues but may be important in the future. TMLR caters to the shorter format manuscripts that are usually submitted to conferences, providing fast turnarounds and double blind reviewing. We employ a rolling submission process, shortened review period, flexible timelines, and variable manuscript length, to enable deep and sustained interactions among authors, reviewers, editors and readers. This leads to a high level of quality and rigor for every published article. TMLR does not accept submissions that have any overlap with previously published work. TMLR maximizes openness and transparency by hosting the review process on OpenReview.

For more information on TMLR, see the following presentation given at the NeurIPS 2021 Pre-Registration Workshop:

News

Editors-in-Chief

Editors-in-Chief of TMLR are Hugo Larochelle (Google DeepMind, Mila), Naila Murray (Meta), Gautam Kamath (University of Waterloo), and Nihar B. Shah (CMU). Founding Editors-in-Chief include Hugo, Kyunghyun Cho, and Raia Hadsell. TMLR's Managing Editor is Paul Vicol (Google DeepMind), who succedes the founding Managing Editor Fabian Pedregosa (Google DeepMind). The goal of TMLR and the Editors-in-Chief is to support the evolving needs of the machine learning community. We welcome your feedback and comments via e-mail: tmlr@jmlr.org.

Reviewing and publication

We use the reviewing and publication systems on OpenReview for openness and transparency. See the author guidelines here, or proceed directly to OpenReview to start your submission. TMLR published electronically with International Standard Serial Number (ISSN) 2835-8856.

Advisory Board Members

TMLR’s advisory board consists of nine experts who have extensive experience in creating, maintaining and improving academic publication venues, conferences and workshops in machine learning, artificial intelligence, and adjacent areas.

Kyunghyun Cho: Prescient Design and New York University.

Alexandra Chouldechova: Microsoft Research and Carnegie Mellon University.

Raia Hadsell: Google DeepMind.

Lillian Lee: Cornell University.

Andrew McCallum: Google and University of Massachusetts, Amherst.

Shakir Mohamed: Google DeepMind.

Natalie Schluter: Apple and IT University, Copenhagen.

Bernhard Schölkopf: Max Planck Institute for Intelligent Systems.

Devi Parikh.

Sponsors

TMLR is supported by our generous sponsors:

    Mila   Vector   CIFAR   

© TMLR 2025.
Mastodon Mastodon Mastodon