Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Trend Filtering on Graphs

Yu-Xiang Wang, James Sharpnack, Alexander J. Smola, Ryan J. Tibshirani; 17(105):1−41, 2016.

Abstract

We introduce a family of adaptive estimators on graphs, based on penalizing the $\ell_1$ norm of discrete graph differences. This generalizes the idea of trend filtering (Kim et al., 2009; Tibshirani, 2014), used for univariate nonparametric regression, to graphs. Analogous to the univariate case, graph trend filtering exhibits a level of local adaptivity unmatched by the usual $\ell_2$-based graph smoothers. It is also defined by a convex minimization problem that is readily solved (e.g., by fast ADMM or Newton algorithms). We demonstrate the merits of graph trend filtering through both examples and theory.

[abs][pdf][bib]       
© JMLR 2016. (edit, beta)

Mastodon