Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Using Conceptors to Manage Neural Long-Term Memories for Temporal Patterns

Herbert Jaeger; 18(13):1−43, 2017.

Abstract

Biological brains can learn, recognize, organize, and re- generate large repertoires of temporal patterns. Here I propose a mechanism of neurodynamical pattern learning and representation, called conceptors, which offers an integrated account of a number of such phenomena and functionalities. It becomes possible to store a large number of temporal patterns in a single recurrent neural network. In the recall process, stored patterns can be morphed and focussed. Parametric families of patterns can be learnt from a very small number of examples. Stored temporal patterns can be content- addressed in ways that are analog to recalling static patterns in Hopfield networks.

[abs][pdf][bib]        [supplementary]
© JMLR 2017. (edit, beta)