Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Minimax Estimation of Kernel Mean Embeddings

Ilya Tolstikhin, Bharath K. Sriperumbudur, Krikamol Mu, et; 18(86):1−47, 2017.

Abstract

In this paper, we study the minimax estimation of the Bochner integral \[ \mu_k(P) := \int_\mathcal{X} k(\cdot,x)\, dP(x), \] also called the kernel mean embedding, based on random samples drawn i.i.d. from $P$, where $k:\mathcal{X}\times\mathcal{X}\rightarrow \mathbb{R}$ is a positive definite kernel. Various estimators (including the empirical estimator), $\hat{\theta}_n$ of $\mu_k(P)$ are studied in the literature wherein all of them satisfy $\|\hat{\theta}_n-\mu_k(P)\|_{\mathcal{H}_k}=O_P(n^{-1/2})$ with $\mathcal{H}_k$ being the reproducing kernel Hilbert space induced by $k$. The main contribution of the paper is in showing that the above mentioned rate of $n^{-1/2}$ is minimax in $\|\cdot\|_{\mathcal{H}_k}$ and $\|\cdot\|_{L^2(\mathbb{R}^d)}$-norms over the class of discrete measures and the class of measures that has an infinitely differentiable density, with $k$ being a continuous translation- invariant kernel on $\mathbb{R}^d$. The interesting aspect of this result is that the minimax rate is independent of the smoothness of the kernel and the density of $P$ (if it exists).

[abs][pdf][bib]       
© JMLR 2017. (edit, beta)

Mastodon