Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Approximate Submodularity and its Applications: Subset Selection, Sparse Approximation and Dictionary Selection

Abhimanyu Das, David Kempe; 19(3):1−34, 2018.

Abstract

We introduce the submodularity ratio as a measure of how “close” to submodular a set function $f$ is. We show that when $f$ has submodularity ratio $\gamma$, the greedy algorithm for maximizing $f$ provides a $(1-e^{-\gamma})$-approximation. Furthermore, when $\gamma$ is bounded away from 0, the greedy algorithm for minimum submodular cover also provides essentially an $O(\log n)$ approximation for a universe of $n$ elements. As a main application of this framework, we study the problem of selecting a subset of $k$ random variables from a large set, in order to obtain the best linear prediction of another variable of interest. We analyze the performance of widely used greedy heuristics; in particular, by showing that the submodularity ratio is lower-bounded by the smallest $2k$-sparse eigenvalue of the covariance matrix, we obtain the strongest known approximation guarantees for the Forward Regression and Orthogonal Matching Pursuit algorithms. As a second application, we analyze greedy algorithms for the dictionary selection problem, and significantly improve the previously known guarantees. Our theoretical analysis is complemented by experiments on real-world and synthetic data sets; in particular, we focus on an analysis of how tight various spectral parameters and the submodularity ratio are in terms of predicting the performance of the greedy algorithms.

[abs][pdf][bib]       
© JMLR 2018. (edit, beta)

Mastodon