Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

An Approach to One-Bit Compressed Sensing Based on Probably Approximately Correct Learning Theory

Mehmet Eren Ahsen, Mathukumalli Vidyasagar; 20(11):1−23, 2019.

Abstract

In this paper, the problem of one-bit compressed sensing (OBCS) is formulated as a problem in probably approximately correct (PAC) learning. It is shown that the Vapnik-Chervonenkis (VC-) dimension of the set of half-spaces in $\R^n$ generated by $k$-sparse vectors is bounded below by $k ( \lfloor\lg (n/k) \rfloor +1 )$ and above by $\lfloor 2k \lg (en) \rfloor $. By coupling this estimate with well-established results in PAC learning theory, we show that a consistent algorithm can recover a $k$-sparse vector with $O(k \lg n)$ measurements, given only the signs of the measurement vector. This result holds for \textit{all} probability measures on $\R^n$. The theory is also applicable to the case of noisy labels, where the signs of the measurements are flipped with some unknown probability.

[abs][pdf][bib]       
© JMLR 2019. (edit, beta)

Mastodon