Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Fast Exact Matrix Completion: A Unified Optimization Framework for Matrix Completion

Dimitris Bertsimas, Michael Lingzhi Li; 21(231):1−43, 2020.

Abstract

We formulate the problem of matrix completion with and without side information as a non-convex optimization problem. We design fastImpute based on non-convex gradient descent and show it converges to a global minimum that is guaranteed to recover closely the underlying matrix while it scales to matrices of sizes beyond $10^5 \times 10^5$. We report experiments on both synthetic and real-world datasets that show fastImpute is competitive in both the accuracy of the matrix recovered and the time needed across all cases. Furthermore, when a high number of entries are missing, fastImpute is over $75\%$ lower in MAPE and $15$ times faster than current state-of-the-art matrix completion methods in both the case with side information and without.

[abs][pdf][bib]       
© JMLR 2020. (edit, beta)

Mastodon