Home Page




Editorial Board

Open Source Software

Proceedings (PMLR)

Transactions (TMLR)




Frequently Asked Questions

Contact Us

RSS Feed

Supervised Dimensionality Reduction and Visualization using Centroid-Encoder

Tomojit Ghosh, Michael Kirby; 23(20):1−34, 2022.


We propose a new tool for visualizing complex, and potentially large and high-dimensional, data sets called Centroid-Encoder (CE). The architecture of the Centroid-Encoder is similar to the autoencoder neural network but it has a modified target, i.e., the class centroid in the ambient space. As such, CE incorporates label information and performs a supervised data visualization. The training of CE is done in the usual way with a training set whose parameters are tuned using a validation set. The evaluation of the resulting CE visualization is performed on a sequestered test set where the generalization of the model is assessed both visually and quantitatively. We present a detailed comparative analysis of the method using a wide variety of data sets and techniques, both supervised and unsupervised, including NCA, non-linear NCA, t-distributed NCA, t-distributed MCML, supervised UMAP, supervised PCA, Colored Maximum Variance Unfolding, supervised Isomap, Parametric Embedding, supervised Neighbor Retrieval Visualizer, and Multiple Relational Embedding. An analysis of variance using PCA demonstrates that a non-linear preprocessing by the CE transformation of the data captures more variance than PCA by dimension.

[abs][pdf][bib]        [code]
© JMLR 2022. (edit, beta)