Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

An Efficient Sampling Algorithm for Non-smooth Composite Potentials

Wenlong Mou, Nicolas Flammarion, Martin J. Wainwright, Peter L. Bartlett; 23(233):1−50, 2022.

Abstract

We consider the problem of sampling from a density of the form $p(x) \propto \exp(-f(x)- g(x))$, where $f: \mathbb{R}^d \rightarrow \mathbb{R}$ is a smooth function and $g: \mathbb{R}^d \rightarrow \mathbb{R}$ is a convex and Lipschitz function. We propose a new algorithm based on the Metropolis--Hastings framework. Under certain isoperimetric inequalities on the target density, we prove that the algorithm mixes to within total variation (TV) distance $\varepsilon$ of the target density in at most $O(d \log (d/\varepsilon))$ iterations. This guarantee extends previous results on sampling from distributions with smooth log densities ($g = 0$) to the more general composite non-smooth case, with the same mixing time up to a multiple of the condition number. Our method is based on a novel proximal-based proposal distribution that can be efficiently computed for a large class of non-smooth functions $g$. Simulation results on posterior sampling problems that arise from the Bayesian Lasso show empirical advantage over previous proposal distributions.

[abs][pdf][bib]       
© JMLR 2022. (edit, beta)

Mastodon