Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Principal Components Bias in Over-parameterized Linear Models, and its Manifestation in Deep Neural Networks

Guy Hacohen, Daphna Weinshall; 23(155):1−46, 2022.

Abstract

Recent work suggests that convolutional neural networks of different architectures learn to classify images in the same order. To understand this phenomenon, we revisit the over-parametrized deep linear network model. Our analysis reveals that, when the hidden layers are wide enough, the convergence rate of this model's parameters is exponentially faster along the directions of the larger principal components of the data, at a rate governed by the corresponding singular values. We term this convergence pattern the Principal Components bias (PC-bias). Empirically, we show how the PC-bias streamlines the order of learning of both linear and non-linear networks, more prominently at earlier stages of learning. We then compare our results to the simplicity bias, showing that both biases can be seen independently, and affect the order of learning in different ways. Finally, we discuss how the PC-bias may explain some benefits of early stopping and its connection to PCA, and why deep networks converge more slowly with random labels.

[abs][pdf][bib]       
© JMLR 2022. (edit, beta)

Mastodon