Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Adaptation to the Range in K-Armed Bandits

Hédi Hadiji, Gilles Stoltz; 24(13):1−33, 2023.

Abstract

We consider stochastic bandit problems with $K$ arms, each associated with a distribution supported on a given finite range $[m,M]$. We do not assume that the range $[m,M]$ is known and show that there is a cost for learning this range. Indeed, a new trade-off between distribution-dependent and distribution-free regret bounds arises, which prevents from simultaneously achieving the typical $\ln T$ and $\sqrt{T}$ bounds. For instance, a $\sqrt{T}$ distribution-free regret bound may only be achieved if the distribution-dependent regret bounds are at least of order $\sqrt{T}$. We exhibit a strategy achieving the rates for regret imposed by the new trade-off.

[abs][pdf][bib]       
© JMLR 2023. (edit, beta)

Mastodon