Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Prior Specification for Bayesian Matrix Factorization via Prior Predictive Matching

Eliezer de Souza da Silva, Tomasz Kuśmierczyk, Marcelo Hartmann, Arto Klami; 24(67):1−51, 2023.

Abstract

The behavior of many Bayesian models used in machine learning critically depends on the choice of prior distributions, controlled by some hyperparameters typically selected through Bayesian optimization or cross-validation. This requires repeated, costly, posterior inference. We provide an alternative for selecting good priors without carrying out posterior inference, building on the prior predictive distribution that marginalizes the model parameters. We estimate virtual statistics for data generated by the prior predictive distribution and then optimize over the hyperparameters to learn those for which the virtual statistics match the target values provided by the user or estimated from (a subset of) the observed data. We apply the principle for probabilistic matrix factorization, for which good solutions for prior selection have been missing. We show that for Poisson factorization models we can analytically determine the hyperparameters, including the number of factors, that best replicate the target statistics, and we empirically study the sensitivity of the approach for the model mismatch. We also present a model-independent procedure that determines the hyperparameters for general models by stochastic optimization and demonstrate this extension in the context of hierarchical matrix factorization models.

[abs][pdf][bib]        [code]
© JMLR 2023. (edit, beta)

Mastodon