Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

On the Optimality of Misspecified Spectral Algorithms

Haobo Zhang, Yicheng Li, Qian Lin; 25(188):1−50, 2024.

Abstract

In the misspecified spectral algorithms problem, researchers usually assume the underground true function $f_{\rho}^{*} \in [\mathcal{H}]^{s}$, a less-smooth interpolation space of a reproducing kernel Hilbert space (RKHS) $\mathcal{H}$ for some $s\in (0,1)$. The existing minimax optimal results require $\|f_{\rho}^{*}\|_{L^{\infty}}<\infty$ which implicitly requires $s > \alpha_{0}$ where $\alpha_{0}\in (0,1)$ is the embedding index, a constant depending on $\mathcal{H}$. Whether the spectral algorithms are optimal for all $s\in (0,1)$ is an outstanding problem lasting for years. In this paper, we show that spectral algorithms are minimax optimal for any $\alpha_{0}-\frac{1}{\beta} < s < 1$, where $\beta$ is the eigenvalue decay rate of $\mathcal{H}$. We also give several classes of RKHSs whose embedding index satisfies $ \alpha_0 = \frac{1}{\beta} $. Thus, the spectral algorithms are minimax optimal for all $s\in (0,1)$ on these RKHSs.

[abs][pdf][bib]       
© JMLR 2024. (edit, beta)

Mastodon