Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Generalization and Stability of Interpolating Neural Networks with Minimal Width

Hossein Taheri, Christos Thrampoulidis; 25(156):1−41, 2024.

Abstract

We investigate the generalization and optimization properties of shallow neural-network classifiers trained by gradient descent in the interpolating regime. Specifically, in a realizable scenario where model weights can achieve arbitrarily small training error $\epsilon$ and their distance from initialization is $g(\epsilon)$, we demonstrate that gradient descent with $n$ training data achieves training error $O(g(1/T)^2\big/T)$ and generalization error $O(g(1/T)^2\big/n)$ at iteration $T$, provided there are at least $m=\Omega(g(1/T)^4)$ hidden neurons. We then show that our realizable setting encompasses a special case where data are separable by the model's neural tangent kernel. For this and logistic-loss minimization, we prove the training loss decays at a rate of $\tilde O(1/ T)$ given polylogarithmic number of neurons $m=\Omega(\log^4 (T))$. Moreover, with $m=\Omega(\log^{4} (n))$ neurons and $T\approx n$ iterations, we bound the test loss by $\tilde{O}(1/ n)$. Our results differ from existing generalization outcomes using the algorithmic-stability framework, which necessitate polynomial width and yield suboptimal generalization rates. Central to our analysis is the use of a new self-bounded weak-convexity property, which leads to a generalized local quasi-convexity property for sufficiently parameterized neural-network classifiers. Eventually, despite the objective's non-convexity, this leads to convergence and generalization-gap bounds that resemble those found in the convex setting of linear logistic regression.

[abs][pdf][bib]       
© JMLR 2024. (edit, beta)

Mastodon