Neural Feature Learning in Function Space
Xiangxiang Xu, Lizhong Zheng; 25(142):1−76, 2024.
Abstract
We present a novel framework for learning system design with neural feature extractors. First, we introduce the feature geometry, which unifies statistical dependence and feature representations in a function space equipped with inner products. This connection defines function-space concepts on statistical dependence, such as norms, orthogonal projection, and spectral decomposition, exhibiting clear operational meanings. In particular, we associate each learning setting with a dependence component and formulate learning tasks as finding corresponding feature approximations. We propose a nesting technique, which provides systematic algorithm designs for learning the optimal features from data samples with off-the-shelf network architectures and optimizers. We further demonstrate multivariate learning applications, including conditional inference and multimodal learning, where we present the optimal features and reveal their connections to classical approaches.
[abs]
[pdf][bib] [code]© JMLR 2024. (edit, beta) |