Home Page




Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)




Frequently Asked Questions

Contact Us

RSS Feed

Sharpness-Aware Minimization and the Edge of Stability

Philip M. Long, Peter L. Bartlett; 25(179):1−20, 2024.


Recent experiments have shown that, often, when training a neural network with gradient descent (GD) with a step size $\eta$, the operator norm of the Hessian of the loss grows until it approximately reaches $2/\eta$, after which it fluctuates around this value. The quantity $2/\eta$ has been called the “edge of stability” based on consideration of a local quadratic approximation of the loss. We perform a similar calculation to arrive at an “edge of stability” for Sharpness-Aware Minimization (SAM), a variant of GD which has been shown to improve its generalization. Unlike the case for GD, the resulting SAM-edge depends on the norm of the gradient. Using three deep learning training tasks, we see empirically that SAM operates on the edge of stability identified by this analysis.

[abs][pdf][bib]        [code]
© JMLR 2024. (edit, beta)