Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Distribution Estimation under the Infinity Norm

Aryeh Kontorovich, Amichai Painsky; 26(162):1−30, 2025.

Abstract

We present novel bounds for estimating discrete probability distributions under the $\ell_\infty$ norm. These are nearly optimal in various precise senses, including a kind of instance-optimality. Our data-dependent convergence guarantees for the maximum likelihood estimator significantly improve upon the currently known results. A variety of techniques are utilized and innovated upon, including Chernoff-type inequalities and empirical Bernstein bounds. We illustrate our results in synthetic and real-world experiments. Finally, we apply our proposed framework to a basic selective inference problem, where we estimate the most frequent probabilities in a sample.

[abs][pdf][bib]       
© JMLR 2025. (edit, beta)

Mastodon