Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Optimal and Efficient Algorithms for Decentralized Online Convex Optimization

Yuanyu Wan, Tong Wei, Bo Xue, Mingli Song, Lijun Zhang; 26(135):1−43, 2025.

Abstract

We investigate decentralized online convex optimization (D-OCO), in which a set of local learners are required to minimize a sequence of global loss functions using only local computations and communications. Previous studies have established $O(n^{5/4}\rho^{-1/2}\sqrt{T})$ and ${O}(n^{3/2}\rho^{-1}\log T)$ regret bounds for convex and strongly convex functions respectively, where $n$ is the number of local learners, $\rho<1$ is the spectral gap of the communication matrix, and $T$ is the time horizon. However, there exist large gaps from the existing lower bounds, i.e., $\Omega(n\sqrt{T})$ for convex functions and $\Omega(n)$ for strongly convex functions. To fill these gaps, in this paper, we first develop a novel D-OCO algorithm that can respectively reduce the regret bounds for convex and strongly convex functions to $\tilde{O}(n\rho^{-1/4}\sqrt{T})$ and $\tilde{O}(n\rho^{-1/2}\log T)$. The primary technique is to design an online accelerated gossip strategy that enjoys a faster average consensus among local learners. Furthermore, by carefully exploiting spectral properties of a specific network topology, we enhance the lower bounds for convex and strongly convex functions to $\Omega(n\rho^{-1/4}\sqrt{T})$ and $\Omega(n\rho^{-1/2}\log T)$, respectively. These results suggest that the regret of our algorithm is nearly optimal in terms of $T$, $n$, and $\rho$ for both convex and strongly convex functions. Finally, we propose a projection-free variant of our algorithm to efficiently handle practical applications with complex constraints. Our analysis reveals that the projection-free variant can achieve ${O}(nT^{3/4})$ and ${O}(nT^{2/3}(\log T)^{1/3})$ regret bounds for convex and strongly convex functions with nearly optimal $\tilde{O}(\rho^{-1/2}\sqrt{T})$ and $\tilde{O}(\rho^{-1/2}T^{1/3}(\log T)^{2/3})$ communication rounds, respectively.

[abs][pdf][bib]       
© JMLR 2025. (edit, beta)

Mastodon