Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Second Order Cone Programming Approaches for Handling Missing and Uncertain Data

Pannagadatta K. Shivaswamy, Chiranjib Bhattacharyya, Alexander J. Smola; 7(47):1283−1314, 2006.

Abstract

We propose a novel second order cone programming formulation for designing robust classifiers which can handle uncertainty in observations. Similar formulations are also derived for designing regression functions which are robust to uncertainties in the regression setting. The proposed formulations are independent of the underlying distribution, requiring only the existence of second order moments. These formulations are then specialized to the case of missing values in observations for both classification and regression problems. Experiments show that the proposed formulations outperform imputation.

[abs][pdf][bib]       
© JMLR 2006. (edit, beta)

Mastodon