Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Aggregation of SVM Classifiers Using Sobolev Spaces

Sébastien Loustau; 9(50):1559−1582, 2008.

Abstract

This paper investigates statistical performances of Support Vector Machines (SVM) and considers the problem of adaptation to the margin parameter and to complexity. In particular we provide a classifier with no tuning parameter. It is a combination of SVM classifiers.

Our contribution is two-fold: (1) we propose learning rates for SVM using Sobolev spaces and build a numerically realizable aggregate that converges with same rate; (2) we present practical experiments of this method of aggregation for SVM using both Sobolev spaces and Gaussian kernels.

[abs][pdf][bib]       
© JMLR 2008. (edit, beta)

Mastodon