Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Selection by Prediction with Conformal p-values

Ying Jin, Emmanuel J. Candes; 24(244):1−41, 2023.

Abstract

Decision making or scientific discovery pipelines such as job hiring and drug discovery often involve multiple stages: before any resource-intensive step, there is often an initial screening that uses predictions from a machine learning model to shortlist a few candidates from a large pool. We study screening procedures that aim to select candidates whose unobserved outcomes exceed user-specified values. We develop a method that wraps around any prediction model to produce a subset of candidates while controlling the proportion of falsely selected units. Building upon the conformal inference framework, our method first constructs p-values that quantify the statistical evidence for large outcomes; it then determines the shortlist by comparing the p-values to a threshold introduced in the multiple testing literature. In many cases, the procedure selects candidates whose predictions are above a data-dependent threshold. Our theoretical guarantee holds under mild exchangeability conditions on the samples, generalizing existing results on multiple conformal p-values. We demonstrate the empirical performance of our method via simulations, and apply it to job hiring and drug discovery datasets.

[abs][pdf][bib]        [code]
© JMLR 2023. (edit, beta)

Mastodon