Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Nonparametric Inference under B-bits Quantization

Kexuan Li, Ruiqi Liu, Ganggang Xu, Zuofeng Shang; 25(19):1−68, 2024.

Abstract

Statistical inference based on lossy or incomplete samples is often needed in research areas such as signal/image processing, medical image storage, remote sensing, signal transmission. In this paper, we propose a nonparametric testing procedure based on samples quantized to $B$ bits through a computationally efficient algorithm. Under mild technical conditions, we establish the asymptotic properties of the proposed test statistic and investigate how the testing power changes as $B$ increases. In particular, we show that if $B$ exceeds a certain threshold, the proposed nonparametric testing procedure achieves the classical minimax rate of testing (Shang and Cheng, 2015) for spline models. We further extend our theoretical investigations to a nonparametric linearity test and an adaptive nonparametric test, expanding the applicability of the proposed methods. Extensive simulation studies {together with a real-data analysis} are used to demonstrate the validity and effectiveness of the proposed tests.

[abs][pdf][bib]       
© JMLR 2024. (edit, beta)

Mastodon