Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

PAPAL: A Provable PArticle-based Primal-Dual ALgorithm for Mixed Nash Equilibrium

Shihong Ding, Hanze Dong, Cong Fang, Zhouchen Lin, Tong Zhang; 25(327):1−48, 2024.

Abstract

We consider the non-convex non-concave objective function in two-player zero-sum continuous games. The existence of pure Nash equilibrium requires stringent conditions, posing a major challenge for this problem. To circumvent this difficulty, we examine the problem of identifying a mixed Nash equilibrium, where strategies are randomized and characterized by probability distributions over continuous domains. To this end, we propose PArticle-based Primal-dual ALgorithm (PAPAL) tailored for a weakly entropy-regularized min-max optimization over probability distributions. This algorithm employs the stochastic movements of particles to represent the updates of random strategies for the $\epsilon$-mixed Nash equilibrium. We offer a comprehensive convergence analysis of the proposed algorithm, demonstrating its effectiveness. In contrast to prior research that attempted to update particle importance without movements, PAPAL is the first implementable particle-based algorithm accompanied by non-asymptotic quantitative convergence results, running time, and sample complexity guarantees. Our framework contributes novel insights into the particle-based algorithms for continuous min-max optimization in the general non-convex non-concave setting.

[abs][pdf][bib]       
© JMLR 2024. (edit, beta)

Mastodon