Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Compression, Generalization and Learning

Marco C. Campi, Simone Garatti; 24(339):1−74, 2023.

Abstract

A compression function is a map that slims down an observational set into a subset of reduced size, while preserving its informational content. In multiple applications, the condition that one new observation makes the compressed set change is interpreted that this observation brings in extra information and, in learning theory, this corresponds to misclassification, or misprediction. In this paper, we lay the foundations of a new theory that allows one to keep control on the probability of change of compression (which maps into the statistical "risk" in learning applications). Under suitable conditions, the cardinality of the compressed set is shown to be a consistent estimator of the probability of change of compression (without any upper limit on the size of the compressed set); moreover, unprecedentedly tight finite-sample bounds to evaluate the probability of change of compression are obtained under a generally applicable condition of preference. All results are usable in a fully agnostic setup, i.e., without requiring any a priori knowledge on the probability distribution of the observations. Not only these results offer a valid support to develop trust in observation-driven methodologies, they also play a fundamental role in learning techniques as a tool for hyper-parameter tuning.

[abs][pdf][bib]       
© JMLR 2023. (edit, beta)

Mastodon