Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

On the Natural Gradient of the Evidence Lower Bound

Nihat Ay, Jesse van Oostrum, Adwait Datar; 26(222):1−37, 2025.

Abstract

This article studies the Fisher-Rao gradient, also referred to as the natural gradient, of the evidence lower bound (ELBO) which plays a central role in generative machine learning. It reveals that the gap between the evidence and its lower bound, the ELBO, has essentially a vanishing natural gradient within unconstrained optimization. As a result, maximization of the ELBO is equivalent to minimization of the Kullback-Leibler divergence from a target distribution, the primary objective function of learning. Building on this insight, we derive a condition under which this equivalence persists even when optimization is constrained to a model. This condition yields a geometric characterization, which we formalize through the notion of a cylindrical model.

[abs][pdf][bib]        [code]
© JMLR 2025. (edit, beta)

Mastodon