Home Page

Papers

Submissions

News

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Statistics

Login

Contact Us



RSS Feed

JMLR Volume 19

Numerical Analysis near Singularities in RBF Networks
Weili Guo, Haikun Wei, Yew-Soon Ong, Jaime Rubio Hervas, Junsheng Zhao, Hai Wang, Kanjian Zhang; (1):1−39, 2018.
[abs][pdf][bib]

A Two-Stage Penalized Least Squares Method for Constructing Large Systems of Structural Equations
Chen Chen, Min Ren, Min Zhang, Dabao Zhang; (2):1−34, 2018.
[abs][pdf][bib]

Approximate Submodularity and its Applications: Subset Selection, Sparse Approximation and Dictionary Selection
Abhimanyu Das, David Kempe; (3):1−34, 2018.
[abs][pdf][bib]

A Hidden Absorbing Semi-Markov Model for Informatively Censored Temporal Data: Learning and Inference
Ahmed M. Alaa, Mihaela van der Schaar; (4):1−62, 2018.
[abs][pdf][bib]

Can We Trust the Bootstrap in High-dimensions? The Case of Linear Models
Noureddine El Karoui, Elizabeth Purdom; (5):1−66, 2018.
[abs][pdf][bib]

RSG: Beating Subgradient Method without Smoothness and Strong Convexity
Tianbao Yang, Qihang Lin; (6):1−33, 2018.
[abs][pdf][bib]

Patchwork Kriging for Large-scale Gaussian Process Regression
Chiwoo Park, Daniel Apley; (7):1−43, 2018.
[abs][pdf][bib]

Scalable Bayes via Barycenter in Wasserstein Space
Sanvesh Srivastava, Cheng Li, David B. Dunson; (8):1−35, 2018.
[abs][pdf][bib]

Experience Selection in Deep Reinforcement Learning for Control
Tim de Bruin, Jens Kober, Karl Tuyls, Robert Babuška; (9):1−56, 2018.
[abs][pdf][bib]

A Constructive Approach to $L_0$ Penalized Regression
Jian Huang, Yuling Jiao, Yanyan Liu, Xiliang Lu; (10):1−37, 2018.
[abs][pdf][bib]

Change-Point Computation for Large Graphical Models: A Scalable Algorithm for Gaussian Graphical Models with Change-Points
Leland Bybee, Yves Atchadé; (11):1−38, 2018.
[abs][pdf][bib]

Statistical Analysis and Parameter Selection for Mapper
Mathieu Carrière, Bertrand Michel, Steve Oudot; (12):1−39, 2018.
[abs][pdf][bib]

A Robust Learning Approach for Regression Models Based on Distributionally Robust Optimization
Ruidi Chen, Ioannis Ch. Paschalidis; (13):1−48, 2018.
[abs][pdf][bib]

Model-Free Trajectory-based Policy Optimization with Monotonic Improvement
Riad Akrour, Abbas Abdolmaleki, Hany Abdulsamad, Jan Peters, Gerhard Neumann; (14):1−25, 2018.
[abs][pdf][bib]

Regularized Optimal Transport and the Rot Mover's Distance
Arnaud Dessein, Nicolas Papadakis, Jean-Luc Rouas; (15):1−53, 2018.
[abs][pdf][bib]

ELFI: Engine for Likelihood-Free Inference
Jarno Lintusaari, Henri Vuollekoski, Antti Kangasrääsiö, Kusti Skytén, Marko Järvenpää, Pekka Marttinen, Michael U. Gutmann, Aki Vehtari, Jukka Corander, Samuel Kaski; (16):1−7, 2018.
[abs][pdf][bib]      [webpage] [code]

Streaming kernel regression with provably adaptive mean, variance, and regularization
Audrey Durand, Odalric-Ambrym Maillard, Joelle Pineau; (17):1−34, 2018.
[abs][pdf][bib]

Dual Principal Component Pursuit
Manolis C. Tsakiris, René Vidal; (18):1−50, 2018.
[abs][pdf][bib]

Distributed Proximal Gradient Algorithm for Partially Asynchronous Computer Clusters
Yi Zhou, Yingbin Liang, Yaoliang Yu, Wei Dai, Eric P. Xing; (19):1−32, 2018.
[abs][pdf][bib]

Refining the Confidence Level for Optimistic Bandit Strategies
Tor Lattimore; (20):1−32, 2018.
[abs][pdf][bib]

ThunderSVM: A Fast SVM Library on GPUs and CPUs
Zeyi Wen, Jiashuai Shi, Qinbin Li, Bingsheng He, Jian Chen; (21):1−5, 2018.
[abs][pdf][bib]      [webpage] [code]

Robust Synthetic Control
Muhammad Amjad, Devavrat Shah, Dennis Shen; (22):1−51, 2018.
[abs][pdf][bib]

Reverse Iterative Volume Sampling for Linear Regression
Michał Dereziński, Manfred K. Warmuth; (23):1−39, 2018.
[abs][pdf][bib]

Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems
Lyudmila Grigoryeva, Juan-Pablo Ortega; (24):1−40, 2018.
[abs][pdf][bib]

Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
Maziar Raissi; (25):1−24, 2018.
[abs][pdf][bib]

OpenEnsembles: A Python Resource for Ensemble Clustering
Tom Ronan, Shawn Anastasio, Zhijie Qi, Pedro Henrique S. Vieira Tavares, Roman Sloutsky, Kristen M. Naegle; (26):1−6, 2018.
[abs][pdf][bib]      [webpage] [code]

Importance Sampling for Minibatches
Dominik Csiba, Peter Richtárik; (27):1−21, 2018.
[abs][pdf][bib]

Generalized Rank-Breaking: Computational and Statistical Tradeoffs
Ashish Khetan, Sewoong Oh; (28):1−42, 2018.
[abs][pdf][bib]

Gradient Descent Learns Linear Dynamical Systems
Moritz Hardt, Tengyu Ma, Benjamin Recht; (29):1−44, 2018.
[abs][pdf][bib]

Parallelizing Spectrally Regularized Kernel Algorithms
Nicole Mücke, Gilles Blanchard; (30):1−29, 2018.
[abs][pdf][bib]

A Direct Approach for Sparse Quadratic Discriminant Analysis
Binyan Jiang, Xiangyu Wang, Chenlei Leng; (31):1−37, 2018.
[abs][pdf][bib]

Distribution-Specific Hardness of Learning Neural Networks
Ohad Shamir; (32):1−29, 2018.
[abs][pdf][bib]

Goodness-of-Fit Tests for Random Partitions via Symmetric Polynomials
Chao Gao; (33):1−50, 2018.
[abs][pdf][bib]

A Spectral Approach for the Design of Experiments: Design, Analysis and Algorithms
Bhavya Kailkhura, Jayaraman J. Thiagarajan, Charvi Rastogi, Pramod K. Varshney, Peer-Timo Bremer; (34):1−46, 2018.
[abs][pdf][bib]

Kernel Density Estimation for Dynamical Systems
Hanyuan Hang, Ingo Steinwart, Yunlong Feng, Johan A.K. Suykens; (35):1−49, 2018.
[abs][pdf][bib]

Invariant Models for Causal Transfer Learning
Mateo Rojas-Carulla, Bernhard Schölkopf, Richard Turner, Jonas Peters; (36):1−34, 2018.
[abs][pdf][bib]

The xyz algorithm for fast interaction search in high-dimensional data
Gian-Andrea Thanei, Nicolai Meinshausen, Rajen D. Shah; (37):1−42, 2018.
[abs][pdf][bib]

Local Rademacher Complexity-based Learning Guarantees for Multi-Task Learning
Niloofar Yousefi, Yunwen Lei, Marius Kloft, Mansooreh Mollaghasemi, Georgios C. Anagnostopoulos; (38):1−47, 2018.
[abs][pdf][bib]

State-by-state Minimax Adaptive Estimation for Nonparametric Hidden Markov Models
Luc Lehéricy; (39):1−46, 2018.
[abs][pdf][bib]

Learning from Comparisons and Choices
Sahand Negahban, Sewoong Oh, Kiran K. Thekumparampil, Jiaming Xu; (40):1−95, 2018.
[abs][pdf][bib]

Connections with Robust PCA and the Role of Emergent Sparsity in Variational Autoencoder Models
Bin Dai, Yu Wang, John Aston, Gang Hua, David Wipf; (41):1−42, 2018.
[abs][pdf][bib]

An Efficient and Effective Generic Agglomerative Hierarchical Clustering Approach
Julien Ah-Pine; (42):1−43, 2018.
[abs][pdf][bib]

Markov Blanket and Markov Boundary of Multiple Variables
Xu-Qing Liu, Xin-Sheng Liu; (43):1−50, 2018.
[abs][pdf][bib]

Kernel Distribution Embeddings: Universal Kernels, Characteristic Kernels and Kernel Metrics on Distributions
Carl-Johann Simon-Gabriel, Bernhard Schölkopf; (44):1−29, 2018.
[abs][pdf][bib]

Random Forests, Decision Trees, and Categorical Predictors: The "Absent Levels" Problem
Timothy C. Au; (45):1−30, 2018.
[abs][pdf][bib]

On Tight Bounds for the Lasso
Sara van de Geer; (46):1−48, 2018.
[abs][pdf][bib]

Harmonic Mean Iteratively Reweighted Least Squares for Low-Rank Matrix Recovery
Christian Kümmerle, Juliane Sigl; (47):1−49, 2018.
[abs][pdf][bib]      [github.com]

On Generalized Bellman Equations and Temporal-Difference Learning
Huizhen Yu, A. Rupam Mahmood, Richard S. Sutton; (48):1−49, 2018.
[abs][pdf][bib]

Design and Analysis of the NIPS 2016 Review Process
Nihar B. Shah, Behzad Tabibian, Krikamol Muandet, Isabelle Guyon, Ulrike von Luxburg; (49):1−34, 2018.
[abs][pdf][bib]

Emergence of Invariance and Disentanglement in Deep Representations
Alessandro Achille, Stefano Soatto; (50):1−34, 2018.
[abs][pdf][bib]

Covariances, Robustness, and Variational Bayes
Ryan Giordano, Tamara Broderick, Michael I. Jordan; (51):1−49, 2018.
[abs][pdf][bib]

Accelerating Cross-Validation in Multinomial Logistic Regression with $\ell_1$-Regularization
Tomoyuki Obuchi, Yoshiyuki Kabashima; (52):1−30, 2018.
[abs][pdf][bib]

Profile-Based Bandit with Unknown Profiles
Sylvain Lamprier, Thibault Gisselbrecht, Patrick Gallinari; (53):1−40, 2018.
[abs][pdf][bib]

How Deep Are Deep Gaussian Processes?
Matthew M. Dunlop, Mark A. Girolami, Andrew M. Stuart, Aretha L. Teckentrup; (54):1−46, 2018.
[abs][pdf][bib]

Fast MCMC Sampling Algorithms on Polytopes
Yuansi Chen, Raaz Dwivedi, Martin J. Wainwright, Bin Yu; (55):1−86, 2018.
[abs][pdf][bib]

Modular Proximal Optimization for Multidimensional Total-Variation Regularization
Alvaro Barbero, Suvrit Sra; (56):1−82, 2018.
[abs][pdf][bib]

On Semiparametric Exponential Family Graphical Models
Zhuoran Yang, Yang Ning, Han Liu; (57):1−59, 2018.
[abs][pdf][bib]

Theoretical Analysis of Cross-Validation for Estimating the Risk of the $k$-Nearest Neighbor Classifier
Alain Celisse, Tristan Mary-Huard; (58):1−54, 2018.
[abs][pdf][bib]

Maximum Selection and Sorting with Adversarial Comparators
Jayadev Acharya, Moein Falahatgar, Ashkan Jafarpour, Alon Orlitsky, Ananda Theertha Suresh; (59):1−31, 2018.
[abs][pdf][bib]

A New and Flexible Approach to the Analysis of Paired Comparison Data
Ivo F. D. Oliveira, Nir Ailon, Ori Davidov; (60):1−29, 2018.
[abs][pdf][bib]

Simple Classification Using Binary Data
Deanna Needell, Rayan Saab, Tina Woolf; (61):1−30, 2018.
[abs][pdf][bib]

Hinge-Minimax Learner for the Ensemble of Hyperplanes
Dolev Raviv, Tamir Hazan, Margarita Osadchy; (62):1−30, 2018.
[abs][pdf][bib]

Short-term Sparse Portfolio Optimization Based on Alternating Direction Method of Multipliers
Zhao-Rong Lai, Pei-Yi Yang, Liangda Fang, Xiaotian Wu; (63):1−28, 2018.
[abs][pdf][bib]

Scaling up Data Augmentation MCMC via Calibration
Leo L. Duan, James E. Johndrow, David B. Dunson; (64):1−34, 2018.
[abs][pdf][bib]

Extrapolating Expected Accuracies for Large Multi-Class Problems
Charles Zheng, Rakesh Achanta, Yuval Benjamini; (65):1−30, 2018.
[abs][pdf][bib]

Inference via Low-Dimensional Couplings
Alessio Spantini, Daniele Bigoni, Youssef Marzouk; (66):1−71, 2018.
[abs][pdf][bib]

Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
Christian Donner, Manfred Opper; (67):1−34, 2018.
[abs][pdf][bib]

Multivariate Bayesian Structural Time Series Model
Jinwen Qiu, S. Rao Jammalamadaka, Ning Ning; (68):1−33, 2018.
[abs][pdf][bib]

Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling
Adrian Šošić, Elmar Rueckert, Jan Peters, Abdelhak M. Zoubir, Heinz Koeppl; (69):1−45, 2018.
[abs][pdf][bib]

The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, Nathan Srebro; (70):1−57, 2018.
[abs][pdf][bib]

Optimal Quantum Sample Complexity of Learning Algorithms
Srinivasan Arunachalam, Ronald de Wolf; (71):1−36, 2018.
[abs][pdf][bib]

Scikit-Multiflow: A Multi-output Streaming Framework
Jacob Montiel, Jesse Read, Albert Bifet, Talel Abdessalem; (72):1−5, 2018.
[abs][pdf][bib]      [code]

Optimal Bounds for Johnson-Lindenstrauss Transformations
Michael Burr, Shuhong Gao, Fiona Knoll; (73):1−22, 2018.
[abs][pdf][bib]

An efficient distributed learning algorithm based on effective local functional approximations
Dhruv Mahajan, Nikunj Agrawal, S. Sathiya Keerthi, Sundararajan Sellamanickam, Leon Bottou; (74):1−37, 2018.
[abs][pdf][bib]

Sparse Estimation in Ising Model via Penalized Monte Carlo Methods
Blazej Miasojedow, Wojciech Rejchel; (75):1−26, 2018.
[abs][pdf][bib]

Using Side Information to Reliably Learn Low-Rank Matrices from Missing and Corrupted Observations
Kai-Yang Chiang, Inderjit S. Dhillon, Cho-Jui Hsieh; (76):1−35, 2018.
[abs][pdf][bib]

A Note on Quickly Sampling a Sparse Matrix with Low Rank Expectation
Karl Rohe, Jun Tao, Xintian Han, Norbert Binkiewicz; (77):1−13, 2018.
[abs][pdf][bib]

Online Bootstrap Confidence Intervals for the Stochastic Gradient Descent Estimator
Yixin Fang, Jinfeng Xu, Lei Yang; (78):1−21, 2018.
[abs][pdf][bib]

A Random Matrix Analysis and Improvement of Semi-Supervised Learning for Large Dimensional Data
Xiaoyi Mai; (79):1−27, 2018.
[abs][pdf][bib]

Robust PCA by Manifold Optimization
Teng Zhang, Yi Yang; (80):1−39, 2018.
[abs][pdf][bib]

Improved Asynchronous Parallel Optimization Analysis for Stochastic Incremental Methods
Remi Leblond, Fabian Pedregosa, Simon Lacoste-Julien; (81):1−68, 2018.
[abs][pdf][bib]

Clustering is semidefinitely not that hard: Nonnegative SDP for manifold disentangling
Mariano Tepper, Anirvan M. Sengupta, Dmitri Chklovskii; (82):1−30, 2018.
[abs][pdf][bib]

Seglearn: A Python Package for Learning Sequences and Time Series
David M. Burns, Cari M. Whyne; (83):1−7, 2018.
[abs][pdf][bib]      [code] [webpage]

DALEX: Explainers for Complex Predictive Models in R
Przemyslaw Biecek; (84):1−5, 2018.
[abs][pdf][bib]

© JMLR .