LLORMA: Local Low-Rank Matrix Approximation

Joonseok Lee, Seungyeon Kim, Guy Lebanon, Yoram Singer, Samy Bengio.

Year: 2016, Volume: 17, Issue: 15, Pages: 1−24


Matrix approximation is a common tool in recommendation systems, text mining, and computer vision. A prevalent assumption in constructing matrix approximations is that the partially observed matrix is low-rank. In this paper, we propose, analyze, and experiment with two procedures, one parallel and the other global, for constructing local matrix approximations. The two approaches approximate the observed matrix as a weighted sum of low-rank matrices. These matrices are limited to a local region of the observed matrix. We analyze the accuracy of the proposed local low-rank modeling. Our experiments show improvements in prediction accuracy over classical approaches for recommendation tasks.