Machine Learning Open Source Software
To support the open source software movement, JMLR MLOSS publishes contributions related to implementations of non-trivial machine learning algorithms, toolboxes or even languages for scientific computing. Submission instructions are available here.-
Aequitas Flow: Streamlining Fair ML Experimentation
Sérgio Jesus, Pedro Saleiro, Inês Oliveira e Silva, Beatriz M. Jorge, Rita P. Ribeiro, João Gama, Pedro Bizarro, Rayid Ghani (354):1−7, 2024 codePDF BibTeX
-
Open-Source Conversational AI with SpeechBrain 1.0
Mirco Ravanelli, Titouan Parcollet, Adel Moumen, Sylvain de Langen, Cem Subakan, Peter Plantinga, Yingzhi Wang, Pooneh Mousavi, Luca Della Libera, Artem Ploujnikov, Francesco Paissan, Davide Borra, Salah Zaiem, Zeyu Zhao, Shucong Zhang, Georgios Karakasidis, Sung-Lin Yeh, Pierre Champion, Aku Rouhe, Rudolf Braun, Florian Mai, Juan Zuluaga-Gomez, Seyed Mahed Mousavi, Andreas Nautsch, Ha Nguyen, Xuechen Liu, Sangeet Sagar, Jarod Duret, Salima Mdhaffar, Gaëlle Laperrière, Mickael Rouvier, Renato De Mori, Yannick Estève (333):1−11, 2024 codePDF BibTeX
-
RLtools: A Fast, Portable Deep Reinforcement Learning Library for Continuous Control
Jonas Eschmann, Dario Albani, Giuseppe Loianno (301):1−19, 2024 codePDF BibTeX
-
PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization
Qiqi Duan, Guochen Zhou, Chang Shao, Zhuowei Wang, Mingyang Feng, Yuwei Huang, Yajing Tan, Yijun Yang, Qi Zhao, Yuhui Shi (296):1−28, 2024 codePDF BibTeX
-
skscope: Fast Sparsity-Constrained Optimization in Python
Zezhi Wang, Junxian Zhu, Xueqin Wang, Jin Zhu, Huiyang Pen, Peng Chen, Anran Wang, Xiaoke Zhang (290):1−9, 2024 codePDF BibTeX
-
aeon: a Python Toolkit for Learning from Time Series
Matthew Middlehurst, Ali Ismail-Fawaz, Antoine Guillaume, Christopher Holder, David Guijo-Rubio, Guzal Bulatova, Leonidas Tsaprounis, Lukasz Mentel, Martin Walter, Patrick Schäfer, Anthony Bagnall (289):1−10, 2024 codePDF BibTeX
-
OmniSafe: An Infrastructure for Accelerating Safe Reinforcement Learning Research
Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xuehai Pan, Ruiyang Sun, Weidong Huang, Yiran Geng, Mickel Liu, Yaodong Yang (285):1−6, 2024 codePDF BibTeX
-
Pearl: A Production-Ready Reinforcement Learning Agent
Zheqing Zhu, Rodrigo de Salvo Braz, Jalaj Bhandari, Daniel Jiang, Yi Wan, Yonathan Efroni, Liyuan Wang, Ruiyang Xu, Hongbo Guo, Alex Nikulkov, Dmytro Korenkevych, Urun Dogan, Frank Cheng, Zheng Wu, Wanqiao Xu (273):1−30, 2024 codePDF BibTeX
-
pgmpy: A Python Toolkit for Bayesian Networks
-
PromptBench: A Unified Library for Evaluation of Large Language Models
Kaijie Zhu, Qinlin Zhao, Hao Chen, Jindong Wang, Xing Xie (254):1−22, 2024 codePDF BibTeX
-
Fortuna: A Library for Uncertainty Quantification in Deep Learning
Gianluca Detommaso, Alberto Gasparin, Michele Donini, Matthias Seeger, Andrew Gordon Wilson, Cedric Archambeau (238):1−7, 2024 codePDF BibTeX
-
BenchMARL: Benchmarking Multi-Agent Reinforcement Learning
Matteo Bettini, Amanda Prorok, Vincent Moens (217):1−10, 2024 codePDF BibTeX
-
PAMI: An Open-Source Python Library for Pattern Mining
Uday Kiran Rage, Veena Pamalla, Masashi Toyoda, Masaru Kitsuregawa (209):1−6, 2024 codePDF BibTeX
-
DoWhy-GCM: An Extension of DoWhy for Causal Inference in Graphical Causal Models
Patrick Blöbaum, Peter Götz, Kailash Budhathoki, Atalanti A. Mastakouri, Dominik Janzing (147):1−7, 2024 codePDF BibTeX
-
PyGOD: A Python Library for Graph Outlier Detection
Kay Liu, Yingtong Dou, Xueying Ding, Xiyang Hu, Ruitong Zhang, Hao Peng, Lichao Sun, Philip S. Yu (141):1−9, 2024 codePDF BibTeX
-
OpenBox: A Python Toolkit for Generalized Black-box Optimization
Huaijun Jiang, Yu Shen, Yang Li, Beicheng Xu, Sixian Du, Wentao Zhang, Ce Zhang, Bin Cui (120):1−11, 2024 codePDF BibTeX
-
QDax: A Library for Quality-Diversity and Population-based Algorithms with Hardware Acceleration
Felix Chalumeau, Bryan Lim, Raphaël Boige, Maxime Allard, Luca Grillotti, Manon Flageat, Valentin Macé, Guillaume Richard, Arthur Flajolet, Thomas Pierrot, Antoine Cully (108):1−16, 2024 codePDF BibTeX
-
ptwt - The PyTorch Wavelet Toolbox
Moritz Wolter, Felix Blanke, Jochen Garcke, Charles Tapley Hoyt (80):1−7, 2024 codePDF BibTeX
-
On Unbiased Estimation for Partially Observed Diffusions
Jeremy Heng, Jeremie Houssineau, Ajay Jasra (66):1−66, 2024 codePDF BibTeX
-
Causal-learn: Causal Discovery in Python
Yujia Zheng, Biwei Huang, Wei Chen, Joseph Ramsey, Mingming Gong, Ruichu Cai, Shohei Shimizu, Peter Spirtes, Kun Zhang (60):1−8, 2024 codePDF BibTeX
-
Invariant and Equivariant Reynolds Networks
Akiyoshi Sannai, Makoto Kawano, Wataru Kumagai (42):1−36, 2024 codePDF BibTeX
-
Pygmtools: A Python Graph Matching Toolkit
Runzhong Wang, Ziao Guo, Wenzheng Pan, Jiale Ma, Yikai Zhang, Nan Yang, Qi Liu, Longxuan Wei, Hanxue Zhang, Chang Liu, Zetian Jiang, Xiaokang Yang, Junchi Yan (33):1−7, 2024 codePDF BibTeX
-
Scaling Up Models and Data with t5x and seqio
Adam Roberts, Hyung Won Chung, Gaurav Mishra, Anselm Levskaya, James Bradbury, Daniel Andor, Sharan Narang, Brian Lester, Colin Gaffney, Afroz Mohiuddin, Curtis Hawthorne, Aitor Lewkowycz, Alex Salcianu, Marc van Zee, Jacob Austin, Sebastian Goodman, Livio Baldini Soares, Haitang Hu, Sasha Tsvyashchenko, Aakanksha Chowdhery, Jasmijn Bastings, Jannis Bulian, Xavier Garcia, Jianmo Ni, Andrew Chen, Kathleen Kenealy, Kehang Han, Michelle Casbon, Jonathan H. Clark, Stephan Lee, Dan Garrette, James Lee-Thorp, Colin Raffel, Noam Shazeer, Marvin Ritter, Maarten Bosma, Alexandre Passos, Jeremy Maitin-Shepard, Noah Fiedel, Mark Omernick, Brennan Saeta, Ryan Sepassi, Alexander Spiridonov, Joshua Newlan, Andrea Gesmundo (377):1−8, 2023 codePDF BibTeX
-
TorchOpt: An Efficient Library for Differentiable Optimization
Jie Ren*, Xidong Feng*, Bo Liu*, Xuehai Pan*, Yao Fu, Luo Mai, Yaodong Yang (367):1−14, 2023 codePDF BibTeX
-
Avalanche: A PyTorch Library for Deep Continual Learning
Antonio Carta, Lorenzo Pellegrini, Andrea Cossu, Hamed Hemati, Vincenzo Lomonaco (363):1−6, 2023 codePDF BibTeX
-
MARLlib: A Scalable and Efficient Multi-agent Reinforcement Learning Library
Siyi Hu, Yifan Zhong, Minquan Gao, Weixun Wang, Hao Dong, Xiaodan Liang, Zhihui Li, Xiaojun Chang, Yaodong Yang (315):1−23, 2023 codePDF BibTeX
-
Fairlearn: Assessing and Improving Fairness of AI Systems
Hilde Weerts, Miroslav Dudík, Richard Edgar, Adrin Jalali, Roman Lutz, Michael Madaio (257):1−8, 2023 codePDF BibTeX
-
Torchhd: An Open Source Python Library to Support Research on Hyperdimensional Computing and Vector Symbolic Architectures
Mike Heddes, Igor Nunes, Pere Vergés, Denis Kleyko, Danny Abraham, Tony Givargis, Alexandru Nicolau, Alexander Veidenbaum (255):1−10, 2023 codePDF BibTeX
-
skrl: Modular and Flexible Library for Reinforcement Learning
Antonio Serrano-Muñoz, Dimitrios Chrysostomou, Simon Bøgh, Nestor Arana-Arexolaleiba (254):1−9, 2023 codePDF BibTeX
-
MultiZoo and MultiBench: A Standardized Toolkit for Multimodal Deep Learning
Paul Pu Liang, Yiwei Lyu, Xiang Fan, Arav Agarwal, Yun Cheng, Louis-Philippe Morency, Ruslan Salakhutdinov (234):1−7, 2023 codePDF BibTeX
-
Merlion: End-to-End Machine Learning for Time Series
Aadyot Bhatnagar, Paul Kassianik, Chenghao Liu, Tian Lan, Wenzhuo Yang, Rowan Cassius, Doyen Sahoo, Devansh Arpit, Sri Subramanian, Gerald Woo, Amrita Saha, Arun Kumar Jagota, Gokulakrishnan Gopalakrishnan, Manpreet Singh, K C Krithika, Sukumar Maddineni, Daeki Cho, Bo Zong, Yingbo Zhou, Caiming Xiong, Silvio Savarese, Steven Hoi, Huan Wang (226):1−6, 2023 codePDF BibTeX
-
LibMTL: A Python Library for Deep Multi-Task Learning
-
L0Learn: A Scalable Package for Sparse Learning using L0 Regularization
Hussein Hazimeh, Rahul Mazumder, Tim Nonet (205):1−8, 2023 codePDF BibTeX
-
CodaLab Competitions: An Open Source Platform to Organize Scientific Challenges
Adrien Pavao, Isabelle Guyon, Anne-Catherine Letournel, Dinh-Tuan Tran, Xavier Baro, Hugo Jair Escalante, Sergio Escalera, Tyler Thomas, Zhen Xu (198):1−6, 2023 codePDF BibTeX
-
MALib: A Parallel Framework for Population-based Multi-agent Reinforcement Learning
Ming Zhou, Ziyu Wan, Hanjing Wang, Muning Wen, Runzhe Wu, Ying Wen, Yaodong Yang, Yong Yu, Jun Wang, Weinan Zhang (150):1−12, 2023 codePDF BibTeX
-
SQLFlow: An Extensible Toolkit Integrating DB and AI
Jun Zhou, Ke Zhang, Lin Wang, Hua Wu, Yi Wang, ChaoChao Chen (116):1−9, 2023 codePDF BibTeX
-
FedLab: A Flexible Federated Learning Framework
Dun Zeng, Siqi Liang, Xiangjing Hu, Hui Wang, Zenglin Xu (100):1−7, 2023 codePDF BibTeX
-
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond
Anna Hedström, Leander Weber, Daniel Krakowczyk, Dilyara Bareeva, Franz Motzkus, Wojciech Samek, Sebastian Lapuschkin, Marina M.-C. Höhne (34):1−11, 2023 codePDF BibTeX
-
HiClass: a Python Library for Local Hierarchical Classification Compatible with Scikit-learn
Fábio M. Miranda, Niklas Köhnecke, Bernhard Y. Renard (29):1−17, 2023 codePDF BibTeX
-
Impact of classification difficulty on the weight matrices spectra in Deep Learning and application to early-stopping
-
Python package for causal discovery based on LiNGAM
Takashi Ikeuchi, Mayumi Ide, Yan Zeng, Takashi Nicholas Maeda, Shohei Shimizu (14):1−8, 2023 codePDF BibTeX
-
AutoKeras: An AutoML Library for Deep Learning
Haifeng Jin, François Chollet, Qingquan Song, Xia Hu (6):1−6, 2023 codePDF BibTeX
-
OMLT: Optimization & Machine Learning Toolkit
Francesco Ceccon, Jordan Jalving, Joshua Haddad, Alexander Thebelt, Calvin Tsay, Carl D Laird, Ruth Misener (349):1−8, 2022 codePDF BibTeX
-
WarpDrive: Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU
Tian Lan, Sunil Srinivasa, Huan Wang, Stephan Zheng (316):1−6, 2022 codePDF BibTeX
-
d3rlpy: An Offline Deep Reinforcement Learning Library
-
JsonGrinder.jl: automated differentiable neural architecture for embedding arbitrary JSON data
Šimon Mandlík, Matěj Račinský, Viliam Lisý, Tomáš Pevný (298):1−5, 2022 codePDF BibTeX
-
ReservoirComputing.jl: An Efficient and Modular Library for Reservoir Computing Models
Francesco Martinuzzi, Chris Rackauckas, Anas Abdelrehim, Miguel D. Mahecha, Karin Mora (288):1−8, 2022 codePDF BibTeX
-
Deepchecks: A Library for Testing and Validating Machine Learning Models and Data
Shir Chorev, Philip Tannor, Dan Ben Israel, Noam Bressler, Itay Gabbay, Nir Hutnik, Jonatan Liberman, Matan Perlmutter, Yurii Romanyshyn, Lior Rokach (285):1−6, 2022 codePDF BibTeX
-
CleanRL: High-quality Single-file Implementations of Deep Reinforcement Learning Algorithms
Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal Mehta, João G.M. Araújo (274):1−18, 2022 codePDF BibTeX
-
Tianshou: A Highly Modularized Deep Reinforcement Learning Library
Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang Su, Jun Zhu (267):1−6, 2022 codePDF BibTeX
-
abess: A Fast Best-Subset Selection Library in Python and R
Jin Zhu, Xueqin Wang, Liyuan Hu, Junhao Huang, Kangkang Jiang, Yanhang Zhang, Shiyun Lin, Junxian Zhu (202):1−7, 2022 codePDF BibTeX
-
InterpretDL: Explaining Deep Models in PaddlePaddle
Xuhong Li, Haoyi Xiong, Xingjian Li, Xuanyu Wu, Zeyu Chen, Dejing Dou (197):1−6, 2022 codePDF BibTeX
-
ktrain: A Low-Code Library for Augmented Machine Learning
-
Darts: User-Friendly Modern Machine Learning for Time Series
Julien Herzen, Francesco Lässig, Samuele Giuliano Piazzetta, Thomas Neuer, Léo Tafti, Guillaume Raille, Tomas Van Pottelbergh, Marek Pasieka, Andrzej Skrodzki, Nicolas Huguenin, Maxime Dumonal, Jan Kościsz, Dennis Bader, Frédérick Gusset, Mounir Benheddi, Camila Williamson, Michal Kosinski, Matej Petrik, Gaël Grosch (124):1−6, 2022 codePDF BibTeX
-
solo-learn: A Library of Self-supervised Methods for Visual Representation Learning
Victor Guilherme Turrisi da Costa, Enrico Fini, Moin Nabi, Nicu Sebe, Elisa Ricci (56):1−6, 2022 codePDF BibTeX
-
SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization
Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, Frank Hutter (54):1−9, 2022 codePDF BibTeX
-
DoubleML - An Object-Oriented Implementation of Double Machine Learning in Python
Philipp Bach, Victor Chernozhukov, Malte S. Kurz, Martin Spindler (53):1−6, 2022 codePDF BibTeX
-
Toolbox for Multimodal Learn (scikit-multimodallearn)
Dominique Benielli, Baptiste Bauvin, Sokol Koço, Riikka Huusari, Cécile Capponi, Hachem Kadri, François Laviolette (51):1−7, 2022 codePDF BibTeX
-
Stable-Baselines3: Reliable Reinforcement Learning Implementations
Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, Noah Dormann (268):1−8, 2021 codePDF BibTeX
-
DIG: A Turnkey Library for Diving into Graph Deep Learning Research
Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Haiyang Yu, Zhao Xu, Jingtun Zhang, Yi Liu, Keqiang Yan, Haoran Liu, Cong Fu, Bora M Oztekin, Xuan Zhang, Shuiwang Ji (240):1−9, 2021 codePDF BibTeX
-
sklvq: Scikit Learning Vector Quantization
Rick van Veen, Michael Biehl, Gert-Jan de Vries (231):1−6, 2021 codePDF BibTeX
-
FATE: An Industrial Grade Platform for Collaborative Learning With Data Protection
Yang Liu, Tao Fan, Tianjian Chen, Qian Xu, Qiang Yang (226):1−6, 2021 codePDF BibTeX
-
TensorHive: Management of Exclusive GPU Access for Distributed Machine Learning Workloads
Paweł Rościszewski, Michał Martyniak, Filip Schodowski (215):1−5, 2021 codePDF BibTeX
-
dalex: Responsible Machine Learning with Interactive Explainability and Fairness in Python
Hubert Baniecki, Wojciech Kretowicz, Piotr Piątyszek, Jakub Wiśniewski, Przemysław Biecek (214):1−7, 2021 codePDF BibTeX
-
mlr3pipelines - Flexible Machine Learning Pipelines in R
Martin Binder, Florian Pfisterer, Michel Lang, Lennart Schneider, Lars Kotthoff, Bernd Bischl (184):1−7, 2021 codePDF BibTeX
-
Alibi Explain: Algorithms for Explaining Machine Learning Models
Janis Klaise, Arnaud Van Looveren, Giovanni Vacanti, Alexandru Coca (181):1−7, 2021 codePDF BibTeX
-
The ensmallen library for flexible numerical optimization
Ryan R. Curtin, Marcus Edel, Rahul Ganesh Prabhu, Suryoday Basak, Zhihao Lou, Conrad Sanderson (166):1−6, 2021 codePDF BibTeX
-
MushroomRL: Simplifying Reinforcement Learning Research
Carlo D'Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, Jan Peters (131):1−5, 2021 codePDF BibTeX
-
River: machine learning for streaming data in Python
Jacob Montiel, Max Halford, Saulo Martiello Mastelini, Geoffrey Bolmier, Raphael Sourty, Robin Vaysse, Adil Zouitine, Heitor Murilo Gomes, Jesse Read, Talel Abdessalem, Albert Bifet (110):1−8, 2021 codePDF BibTeX
-
mvlearn: Multiview Machine Learning in Python
Ronan Perry, Gavin Mischler, Richard Guo, Theodore Lee, Alexander Chang, Arman Koul, Cameron Franz, Hugo Richard, Iain Carmichael, Pierre Ablin, Alexandre Gramfort, Joshua T. Vogelstein (109):1−7, 2021 codePDF BibTeX
-
OpenML-Python: an extensible Python API for OpenML
Matthias Feurer, Jan N. van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy Mallik, Sahithya Ravi, Andreas Müller, Joaquin Vanschoren, Frank Hutter (100):1−5, 2021 codePDF BibTeX
-
POT: Python Optimal Transport
Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, Titouan Vayer (78):1−8, 2021 codePDF BibTeX
-
ChainerRL: A Deep Reinforcement Learning Library
Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, Takahiro Ishikawa (77):1−14, 2021 codePDF BibTeX
-
Kernel Operations on the GPU, with Autodiff, without Memory Overflows
Benjamin Charlier, Jean Feydy, Joan Alexis Glaunès, François-David Collin, Ghislain Durif (74):1−6, 2021 codePDF BibTeX
-
giotto-tda: : A Topological Data Analysis Toolkit for Machine Learning and Data Exploration
Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella Pérez, Matteo Caorsi, Anibal M. Medina-Mardones, Alberto Dassatti, Kathryn Hess (39):1−6, 2021 codePDF BibTeX
-
Pykg2vec: A Python Library for Knowledge Graph Embedding
Shih-Yuan Yu, Sujit Rokka Chhetri, Arquimedes Canedo, Palash Goyal, Mohammad Abdullah Al Faruque (16):1−6, 2021 codePDF BibTeX
-
algcomparison: Comparing the Performance of Graphical Structure Learning Algorithms with TETRAD
Joseph D. Ramsey, Daniel Malinsky, Kevin V. Bui (238):1−6, 2020 codePDF BibTeX
-
Geomstats: A Python Package for Riemannian Geometry in Machine Learning
Nina Miolane, Nicolas Guigui, Alice Le Brigant, Johan Mathe, Benjamin Hou, Yann Thanwerdas, Stefan Heyder, Olivier Peltre, Niklas Koep, Hadi Zaatiti, Hatem Hajri, Yann Cabanes, Thomas Gerald, Paul Chauchat, Christian Shewmake, Daniel Brooks, Bernhard Kainz, Claire Donnat, Susan Holmes, Xavier Pennec (223):1−9, 2020 codePDF BibTeX
-
scikit-survival: A Library for Time-to-Event Analysis Built on Top of scikit-learn
-
Scikit-network: Graph Analysis in Python
Thomas Bonald, Nathan de Lara, Quentin Lutz, Bertrand Charpentier (185):1−6, 2020 codePDF BibTeX
-
apricot: Submodular selection for data summarization in Python
Jacob Schreiber, Jeffrey Bilmes, William Stafford Noble (161):1−6, 2020 codePDF BibTeX
-
metric-learn: Metric Learning Algorithms in Python
William de Vazelhes, CJ Carey, Yuan Tang, Nathalie Vauquier, Aurélien Bellet (138):1−6, 2020 codePDF BibTeX
-
Probabilistic Learning on Graphs via Contextual Architectures
Davide Bacciu, Federico Errica, Alessio Micheli (134):1−39, 2020 codePDF BibTeX
-
AI Explainability 360: An Extensible Toolkit for Understanding Data and Machine Learning Models
Vijay Arya, Rachel K. E. Bellamy, Pin-Yu Chen, Amit Dhurandhar, Michael Hind, Samuel C. Hoffman, Stephanie Houde, Q. Vera Liao, Ronny Luss, Aleksandra Mojsilović, Sami Mourad, Pablo Pedemonte, Ramya Raghavendra, John T. Richards, Prasanna Sattigeri, Karthikeyan Shanmugam, Moninder Singh, Kush R. Varshney, Dennis Wei, Yunfeng Zhang (130):1−6, 2020 codePDF BibTeX
-
Apache Mahout: Machine Learning on Distributed Dataflow Systems
Robin Anil, Gokhan Capan, Isabel Drost-Fromm, Ted Dunning, Ellen Friedman, Trevor Grant, Shannon Quinn, Paritosh Ranjan, Sebastian Schelter, Özgür Yılmazel (127):1−6, 2020 codePDF BibTeX
-
Tslearn, A Machine Learning Toolkit for Time Series Data
Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guillaume Androz, Chester Holtz, Marie Payne, Roman Yurchak, Marc Rußwurm, Kushal Kolar, Eli Woods (118):1−6, 2020 codePDF BibTeX
-
GluonTS: Probabilistic and Neural Time Series Modeling in Python
Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama Rangapuram, David Salinas, Jasper Schulz, Lorenzo Stella, Ali Caner Türkmen, Yuyang Wang (116):1−6, 2020 codePDF BibTeX
-
MFE: Towards reproducible meta-feature extraction
Edesio Alcobaça, Felipe Siqueira, Adriano Rivolli, Luís P. F. Garcia, Jefferson T. Oliva, André C. P. L. F. de Carvalho (111):1−5, 2020 codePDF BibTeX
-
ThunderGBM: Fast GBDTs and Random Forests on GPUs
Zeyi Wen, Hanfeng Liu, Jiashuai Shi, Qinbin Li, Bingsheng He, Jian Chen (108):1−5, 2020 codePDF BibTeX
-
AI-Toolbox: A C++ library for Reinforcement Learning and Planning (with Python Bindings)
Eugenio Bargiacchi, Diederik M. Roijers, Ann Nowé (102):1−12, 2020 codePDF BibTeX
-
pyDML: A Python Library for Distance Metric Learning
Juan Luis Suárez, Salvador García, Francisco Herrera (96):1−7, 2020 codePDF BibTeX
-
Cornac: A Comparative Framework for Multimodal Recommender Systems
Aghiles Salah, Quoc-Tuan Truong, Hady W. Lauw (95):1−5, 2020 codePDF BibTeX
-
Kymatio: Scattering Transforms in Python
Mathieu Andreux, Tomás Angles, Georgios Exarchakis, Roberto Leonarduzzi, Gaspar Rochette, Louis Thiry, John Zarka, Stéphane Mallat, Joakim Andén, Eugene Belilovsky, Joan Bruna, Vincent Lostanlen, Muawiz Chaudhary, Matthew J. Hirn, Edouard Oyallon, Sixin Zhang, Carmine Cella, Michael Eickenberg (60):1−6, 2020 codePDF BibTeX
-
GraKeL: A Graph Kernel Library in Python
Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos Skianis, Michalis Vazirgiannis (54):1−5, 2020 codePDF BibTeX
-
pyts: A Python Package for Time Series Classification
-
Tensor Train Decomposition on TensorFlow (T3F)
Alexander Novikov, Pavel Izmailov, Valentin Khrulkov, Michael Figurnov, Ivan Oseledets (30):1−7, 2020 codePDF BibTeX
-
ORCA: A Matlab/Octave Toolbox for Ordinal Regression
Javier Sánchez-Monedero, Pedro A. Gutiérrez, María Pérez-Ortiz (125):1−5, 2019 codePDF BibTeX
-
PyOD: A Python Toolbox for Scalable Outlier Detection
Yue Zhao, Zain Nasrullah, Zheng Li (96):1−7, 2019 codePDF BibTeX
-
iNNvestigate Neural Networks!
Maximilian Alber, Sebastian Lapuschkin, Philipp Seegerer, Miriam Hägele, Kristof T. Schütt, Grégoire Montavon, Wojciech Samek, Klaus-Robert Müller, Sven Dähne, Pieter-Jan Kindermans (93):1−8, 2019 codePDF BibTeX
-
AffectiveTweets: a Weka Package for Analyzing Affect in Tweets
Felipe Bravo-Marquez, Eibe Frank, Bernhard Pfahringer, Saif M. Mohammad (92):1−6, 2019 codePDF BibTeX
-
SMART: An Open Source Data Labeling Platform for Supervised Learning
Rob Chew, Michael Wenger, Caroline Kery, Jason Nance, Keith Richards, Emily Hadley, Peter Baumgartner (82):1−5, 2019 codePDF BibTeX
-
Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python
Jason Ge, Xingguo Li, Haoming Jiang, Han Liu, Tong Zhang, Mengdi Wang, Tuo Zhao (44):1−5, 2019 codewebpagePDF BibTeX
-
Pyro: Deep Universal Probabilistic Programming
Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, Noah D. Goodman (28):1−6, 2019 codePDF BibTeX
-
TensorLy: Tensor Learning in Python
Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, Maja Pantic (26):1−6, 2019 codePDF BibTeX
-
spark-crowd: A Spark Package for Learning from Crowdsourced Big Data
Enrique G. Rodrigo, Juan A. Aledo, José A. Gámez (19):1−5, 2019 codePDF BibTeX
-
scikit-multilearn: A Python library for Multi-Label Classification
Piotr Szymański, Tomasz Kajdanowicz (6):1−22, 2019 codePDF BibTeX
-
Seglearn: A Python Package for Learning Sequences and Time Series
David M. Burns, Cari M. Whyne (83):1−7, 2018 codewebpagePDF BibTeX
-
Scikit-Multiflow: A Multi-output Streaming Framework
Jacob Montiel, Jesse Read, Albert Bifet, Talel Abdessalem (72):1−5, 2018 codePDF BibTeX
-
OpenEnsembles: A Python Resource for Ensemble Clustering
Tom Ronan, Shawn Anastasio, Zhijie Qi, Pedro Henrique S. Vieira Tavares, Roman Sloutsky, Kristen M. Naegle (26):1−6, 2018 webpagecodePDF BibTeX
-
ThunderSVM: A Fast SVM Library on GPUs and CPUs
Zeyi Wen, Jiashuai Shi, Qinbin Li, Bingsheng He, Jian Chen (21):1−5, 2018 webpagecodePDF BibTeX
-
ELFI: Engine for Likelihood-Free Inference
Jarno Lintusaari, Henri Vuollekoski, Antti Kangasrääsiö, Kusti Skytén, Marko Järvenpää, Pekka Marttinen, Michael U. Gutmann, Aki Vehtari, Jukka Corander, Samuel Kaski (16):1−7, 2018 webpagecodePDF BibTeX
-
SGDLibrary: A MATLAB library for stochastic optimization algorithms
-
tick: a Python Library for Statistical Learning, with an emphasis on Hawkes Processes and Time-Dependent Models
Emmanuel Bacry, Martin Bompaire, Philip Deegan, Stéphane Gaïffas, Søren V. Poulsen (214):1−5, 2018 codewebpagePDF BibTeX
-
KELP: a Kernel-based Learning Platform
Simone Filice, Giuseppe Castellucci, Giovanni Da San Martino, Aless, ro Moschitti, Danilo Croce, Roberto Basili (191):1−5, 2018 codewebpagePDF BibTeX
-
Pycobra: A Python Toolbox for Ensemble Learning and Visualisation
Benjamin Guedj, Bhargav Srinivasa Desikan (190):1−5, 2018 codewebpagePDF BibTeX
-
HyperTools: a Python Toolbox for Gaining Geometric Insights into High-Dimensional Data
Andrew C. Heusser, Kirsten Ziman, Lucy L. W. Owen, Jeremy R. Manning (152):1−6, 2018 codewebpagePDF BibTeX
-
openXBOW -- Introducing the Passau Open-Source Crossmodal Bag-of-Words Toolkit
Maximilian Schmitt, Björn Schuller (96):1−5, 2017 codePDF BibTeX
-
The MADP Toolbox: An Open Source Library for Planning and Learning in (Multi-)Agent Systems
Frans A. Oliehoek, Matthijs T. J. Spaan, Bas Terwijn, Philipp Robbel, Jo\~{a}o V. Messias (89):1−5, 2017 codePDF BibTeX
-
GPflow: A Gaussian Process Library using TensorFlow
Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke Fujii, Alexis Boukouvalas, Pablo Le{\'o}n-Villagr{\'a}, Zoubin Ghahramani, James Hensman (40):1−6, 2017 codewebpagePDF BibTeX
-
GFA: Exploratory Analysis of Multiple Data Sources with Group Factor Analysis
Eemeli Leppäaho, Muhammad Ammad-ud-din, Samuel Kaski (39):1−5, 2017 coder-project.orgPDF BibTeX
-
POMDPs.jl: A Framework for Sequential Decision Making under Uncertainty
Maxim Egorov, Zachary N. Sunberg, Edward Balaban, Tim A. Wheeler, Jayesh K. Gupta, Mykel J. Kochenderfer (26):1−5, 2017 codewebpagePDF BibTeX
-
Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA
Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, Kevin Leyton-Brown (25):1−5, 2017 codewebpagePDF BibTeX
-
JSAT: Java Statistical Analysis Tool, a Library for Machine Learning
-
Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning
Guillaume Lemaître, Fernando Nogueira, Christos K. Aridas (17):1−5, 2017 codewebpagePDF BibTeX
-
Refinery: An Open Source Topic Modeling Web Platform
Daeil Kim, Benjamin F. Swanson, Michael C. Hughes, Erik B. Sudderth (12):1−5, 2017 codewebpagePDF BibTeX
-
SnapVX: A Network-Based Convex Optimization Solver
David Hallac, Christopher Wong, Steven Diamond, Abhijit Sharang, Rok Sosič, Stephen Boyd, Jure Leskovec (4):1−5, 2017 codestanford.eduPDF BibTeX
-
fastFM: A Library for Factorization Machines
-
Megaman: Scalable Manifold Learning in Python
James McQueen, Marina Meilă, Jacob VanderPlas, Zhongyue Zhang (148):1−5, 2016 codewebpagePDF BibTeX
-
JCLAL: A Java Framework for Active Learning
Oscar Reyes, Eduardo Pérez, María del Carmen Rodríguez-Hernández, Habib M. Fardoun, Sebastián Ventura (95):1−5, 2016 codePDF BibTeX
-
LIBMF: A Library for Parallel Matrix Factorization in Shared-memory Systems
Wei-Sheng Chin, Bo-Wen Yuan, Meng-Yuan Yang, Yong Zhuang, Yu-Chin Juan, Chih-Jen Lin (86):1−5, 2016 codePDF BibTeX
-
CVXPY: A Python-Embedded Modeling Language for Convex Optimization
Steven Diamond, Stephen Boyd (83):1−5, 2016 codewebpagePDF BibTeX
-
Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches
-
MLlib: Machine Learning in Apache Spark
Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, Ameet Talwalkar (34):1−7, 2016 codewebpagePDF BibTeX
-
MEKA: A Multi-label/Multi-target Extension to WEKA
Jesse Read, Peter Reutemann, Bernhard Pfahringer, Geoff Holmes (21):1−5, 2016 codewebpagePDF BibTeX
-
Harry: A Tool for Measuring String Similarity
Konrad Rieck, Christian Wressnegger (9):1−5, 2016 codewebpagePDF BibTeX
-
partykit: A Modular Toolkit for Recursive Partytioning in R
Torsten Hothorn, Achim Zeileis (118):3905−3909, 2015 codePDF BibTeX
-
CEKA: A Tool for Mining the Wisdom of Crowds
Jing Zhang, Victor S. Sheng, Bryce A. Nicholson, Xindong Wu (88):2853−2858, 2015 codePDF BibTeX
-
pyGPs -- A Python Library for Gaussian Process Regression and Classification
Marion Neumann, Shan Huang, Daniel E. Marthaler, Kristian Kersting (80):2611−2616, 2015 codePDF BibTeX
-
The Libra Toolkit for Probabilistic Models
Daniel Lowd, Amirmohammad Rooshenas (75):2459−2463, 2015 codePDF BibTeX
-
RLPy: A Value-Function-Based Reinforcement Learning Framework for Education and Research
Alborz Geramifard, Christoph Dann, Robert H. Klein, William Dabney, Jonathan P. How (46):1573−1578, 2015 codePDF BibTeX
-
Encog: Library of Interchangeable Machine Learning Models for Java and C#
-
The flare Package for High Dimensional Linear Regression and Precision Matrix Estimation in R
Xingguo Li, Tuo Zhao, Xiaoming Yuan, Han Liu (18):553−557, 2015 codewebpagePDF BibTeX
-
Introducing CURRENNT: The Munich Open-Source CUDA RecurREnt Neural Network Toolkit
-
A Classification Module for Genetic Programming Algorithms in JCLEC
Alberto Cano, José María Luna, Amelia Zafra, Sebastián Ventura (15):491−494, 2015 codePDF BibTeX
-
SAMOA: Scalable Advanced Massive Online Analysis
Gianmarco De Francisci Morales, Albert Bifet (5):149−153, 2015 codePDF BibTeX
-
BayesOpt: A Bayesian Optimization Library for Nonlinear Optimization, Experimental Design and Bandits
-
SPMF: A Java Open-Source Pattern Mining Library
Philippe Fournier-Viger, Antonio Gomariz, Ted Gueniche, Azadeh Soltani, Cheng-Wei Wu, Vincent S. Tseng (104):3569−3573, 2014 codePDF BibTeX
-
The Gesture Recognition Toolkit
Nicholas Gillian, Joseph A. Paradiso (101):3483−3487, 2014 codePDF BibTeX
-
ooDACE Toolbox: A Flexible Object-Oriented Kriging Implementation
Ivo Couckuyt, Tom Dhaene, Piet Demeester (91):3183−3186, 2014 codePDF BibTeX
-
pystruct - Learning Structured Prediction in Python
Andreas C. Müller, Sven Behnke (59):2055−2060, 2014 codePDF BibTeX
-
Manopt, a Matlab Toolbox for Optimization on Manifolds
Nicolas Boumal, Bamdev Mishra, P.-A. Absil, Rodolphe Sepulchre (42):1455−1459, 2014 codePDF BibTeX
-
Conditional Random Field with High-order Dependencies for Sequence Labeling and Segmentation
Nguyen Viet Cuong, Nan Ye, Wee Sun Lee, Hai Leong Chieu (28):981−1009, 2014 codePDF BibTeX
-
LIBOL: A Library for Online Learning Algorithms
Steven C.H. Hoi, Jialei Wang, Peilin Zhao (15):495−499, 2014 codePDF BibTeX
-
The FASTCLIME Package for Linear Programming and Large-Scale Precision Matrix Estimation in R
Haotian Pang, Han Liu, Robert V, erbei (14):489−493, 2014 codePDF BibTeX
-
Information Theoretical Estimators Toolbox
-
EnsembleSVM: A Library for Ensemble Learning Using Support Vector Machines
Marc Claesen, Frank De Smet, Johan A.K. Suykens, Bart De Moor (4):141−145, 2014 codePDF BibTeX
-
GURLS: A Least Squares Library for Supervised Learning
Andrea Tacchetti, Pavan K. Mallapragada, Matteo Santoro, Lorenzo Rosasco (100):3201−3205, 2013 codePDF BibTeX
-
Divvy: Fast and Intuitive Exploratory Data Analysis
Joshua M. Lewis, Virginia R. de Sa, Laurens van der Maaten (98):3159−3163, 2013 codewebpagePDF BibTeX
-
QuantMiner for Mining Quantitative Association Rules
Ansaf Salleb-Aouissi, Christel Vrain, Cyril Nortet, Xiangrong Kong, Vivek Rathod, Daniel Cassard (97):3153−3157, 2013 codePDF BibTeX
-
The CAM Software for Nonnegative Blind Source Separation in R-Java
Niya Wang, Fan Meng, Li Chen, Subha Madhavan, Robert Clarke, Eric P. Hoffman, Jianhua Xuan, Yue Wang (88):2899−2903, 2013 codePDF BibTeX
-
BudgetedSVM: A Toolbox for Scalable SVM Approximations
Nemanja Djuric, Liang Lan, Slobodan Vucetic, Zhuang Wang (84):3813−3817, 2013 codePDF BibTeX
-
Tapkee: An Efficient Dimension Reduction Library
Sergey Lisitsyn, Christian Widmer, Fernando J. Iglesias Garcia (72):2355−2359, 2013 codePDF BibTeX
-
Orange: Data Mining Toolbox in Python
Janez Demšar, Tomaž Curk, Aleš Erjavec, Črt Gorup, Tomaž Hočevar, Mitar Milutinovič, Martin Možina, Matija Polajnar, Marko Toplak, Anže Starič, Miha Štajdohar, Lan Umek, Lan Žagar, Jure Žbontar, Marinka Žitnik, Blaž Zupan (71):2349−2353, 2013 codePDF BibTeX
-
JKernelMachines: A Simple Framework for Kernel Machines
David Picard, Nicolas Thome, Matthieu Cord (43):1417−1421, 2013 codePDF BibTeX
-
GPstuff: Bayesian Modeling with Gaussian Processes
Jarno Vanhatalo, Jaakko Riihimäki, Jouni Hartikainen, Pasi Jylänki, Ville Tolvanen, Aki Vehtari (35):1175−1179, 2013 codePDF BibTeX
-
MLPACK: A Scalable C++ Machine Learning Library
Ryan R. Curtin, James R. Cline, N. P. Slagle, William B. March, Parikshit Ram, Nishant A. Mehta, Alexander G. Gray (24):801−805, 2013 codePDF BibTeX
-
A C++ Template-Based Reinforcement Learning Library: Fitting the Code to the Mathematics
Hervé Frezza-Buet, Matthieu Geist (18):625−628, 2013 codePDF BibTeX
-
SVDFeature: A Toolkit for Feature-based Collaborative Filtering
Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, Yong Yu (116):3619−3622, 2012 codePDF BibTeX
-
DARWIN: A Framework for Machine Learning and Computer Vision Research and Development
-
Sally: A Tool for Embedding Strings in Vector Spaces
Konrad Rieck, Christian Wressnegger, Alexander Bikadorov (104):3247−3251, 2012 codePDF BibTeX
-
Oger: Modular Learning Architectures For Large-Scale Sequential Processing
David Verstraeten, Benjamin Schrauwen, Sander Dieleman, Philemon Brakel, Pieter Buteneers, Dejan Pecevski (96):2995−2998, 2012 codePDF BibTeX
-
PREA: Personalized Recommendation Algorithms Toolkit
Joonseok Lee, Mingxuan Sun, Guy Lebanon (87):2699−2703, 2012 codePDF BibTeX
-
A Topic Modeling Toolbox Using Belief Propagation
-
DEAP: Evolutionary Algorithms Made Easy
Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau, Christian Gagné (70):2171−2175, 2012 codePDF BibTeX
-
Pattern for Python
Tom De Smedt, Walter Daelemans (66):2063−2067, 2012 codePDF BibTeX
-
Jstacs: A Java Framework for Statistical Analysis and Classification of Biological Sequences
Jan Grau, Jens Keilwagen, André Gohr, Berit Haldemann, Stefan Posch, Ivo Grosse (62):1967−1971, 2012 codePDF BibTeX
-
glm-ie: Generalised Linear Models Inference & Estimation Toolbox
-
The huge Package for High-dimensional Undirected Graph Estimation in R
Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, Larry Wasserman (37):1059−1062, 2012 codePDF BibTeX
-
NIMFA : A Python Library for Nonnegative Matrix Factorization
Marinka Žitnik, Blaž Zupan (30):849−853, 2012 codePDF BibTeX
-
GPLP: A Local and Parallel Computation Toolbox for Gaussian Process Regression
Chiwoo Park, Jianhua Z. Huang, Yu Ding (26):775−779, 2012 codePDF BibTeX
-
ML-Flex: A Flexible Toolbox for Performing Classification Analyses In Parallel
Stephen R. Piccolo, Lewis J. Frey (19):555−559, 2012 codePDF BibTeX
-
MULTIBOOST: A Multi-purpose Boosting Package
Djalel Benbouzid, Róbert Busa-Fekete, Norman Casagrande, François-David Collin, Balázs Kégl (18):549−553, 2012 codePDF BibTeX
-
The Stationary Subspace Analysis Toolbox
Jan Saputra Müller, Paul von Bünau, Frank C. Meinecke, Franz J. Király, Klaus-Robert Müller (93):3065−3069, 2011 codePDF BibTeX
-
Scikit-learn: Machine Learning in Python
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay (85):2825−2830, 2011 codePDF BibTeX
-
LPmade: Link Prediction Made Easy
Ryan N. Lichtenwalter, Nitesh V. Chawla (75):2489−2492, 2011 codePDF BibTeX
-
MULAN: A Java Library for Multi-Label Learning
Grigorios Tsoumakas, Eleftherios Spyromitros-Xioufis, Jozef Vilcek, Ioannis Vlahavas (71):2411−2414, 2011 codePDF BibTeX
-
Waffles: A Machine Learning Toolkit
-
MSVMpack: A Multi-Class Support Vector Machine Package
Fabien Lauer, Yann Guermeur (66):2293−2296, 2011 codePDF BibTeX
-
The arules R-Package Ecosystem: Analyzing Interesting Patterns from Large Transaction Data Sets
Michael Hahsler, Sudheer Chelluboina, Kurt Hornik, Christian Buchta (57):2021−2025, 2011 codePDF BibTeX
-
CARP: Software for Fishing Out Good Clustering Algorithms
Volodymyr Melnykov, Ranjan Maitra (3):69−73, 2011 codePDF BibTeX
-
Gaussian Processes for Machine Learning (GPML) Toolbox
Carl Edward Rasmussen, Hannes Nickisch (100):3011−3015, 2010 codePDF BibTeX
-
libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models
-
Model-based Boosting 2.0
Torsten Hothorn, Peter Bühlmann, Thomas Kneib, Matthias Schmid, Benjamin Hofner (71):2109−2113, 2010 codePDF BibTeX
-
A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design
Dirk Gorissen, Ivo Couckuyt, Piet Demeester, Tom Dhaene, Karel Crombecq (68):2051−2055, 2010 codePDF BibTeX
-
The SHOGUN Machine Learning Toolbox
Sören Sonnenburg, Gunnar Rätsch, Sebastian Henschel, Christian Widmer, Jonas Behr, Alexander Zien, Fabio de Bona, Alexander Binder, Christian Gehl, Vojt{{\ve}}ch Franc (60):1799−1802, 2010 codePDF BibTeX
-
FastInf: An Efficient Approximate Inference Library
Ariel Jaimovich, Ofer Meshi, Ian McGraw, Gal Elidan (57):1733−1736, 2010 codePDF BibTeX
-
MOA: Massive Online Analysis
Albert Bifet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer (52):1601−1604, 2010 codePDF BibTeX
-
SFO: A Toolbox for Submodular Function Optimization
-
Continuous Time Bayesian Network Reasoning and Learning Engine
Christian R. Shelton, Yu Fan, William Lam, Joon Lee, Jing Xu (37):1137−1140, 2010 codePDF BibTeX
-
Error-Correcting Output Codes Library
Sergio Escalera, Oriol Pujol, Petia Radeva (20):661−664, 2010 codePDF BibTeX
-
DL-Learner: Learning Concepts in Description Logics
-
RL-Glue: Language-Independent Software for Reinforcement-Learning Experiments
Brian Tanner, Adam White (74):2133−2136, 2009 codePDF BibTeX
-
Dlib-ml: A Machine Learning Toolkit
-
Model Monitor (M2): Evaluating, Comparing, and Monitoring Models
Troy Raeder, Nitesh V. Chawla (47):1387−1390, 2009 codePDF BibTeX
-
Java-ML: A Machine Learning Library
Thomas Abeel, Yves Van de Peer, Yvan Saeys (34):931−934, 2009 codePDF BibTeX
-
Nieme: Large-Scale Energy-Based Models
-
Python Environment for Bayesian Learning: Inferring the Structure of Bayesian Networks from Knowledge and Data
-
JNCC2: The Java Implementation Of Naive Credal Classifier 2
Giorgio Corani, Marco Zaffalon (90):2695−2698, 2008 codePDF BibTeX
-
LIBLINEAR: A Library for Large Linear Classification
Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, Chih-Jen Lin (61):1871−1874, 2008 codePDF BibTeX
-
Shark
Christian Igel, Verena Heidrich-Meisner, Tobias Glasmachers (33):993−996, 2008 codePDF BibTeX
-
A Library for Locally Weighted Projection Regression
Stefan Klanke, Sethu Vijayakumar, Stefan Schaal (21):623−626, 2008 codePDF BibTeX