Ranked Bandits in Metric Spaces: Learning Diverse Rankings over Large Document Collections

Aleksandrs Slivkins, Filip Radlinski, Sreenivas Gollapudi.

Year: 2013, Volume: 14, Issue: 13, Pages: 399−436


Abstract

Most learning to rank research has assumed that the utility of different documents is independent, which results in learned ranking functions that return redundant results. The few approaches that avoid this have rather unsatisfyingly lacked theoretical foundations, or do not scale. We present a learning-to-rank formulation that optimizes the fraction of satisfied users, with several scalable algorithms that explicitly takes document similarity and ranking context into account. Our formulation is a non-trivial common generalization of two multi-armed bandit models from the literature: ranked bandits (Radlinski et al., 2008) and Lipschitz bandits (Kleinberg et al., 2008b). We present theoretical justifications for this approach, as well as a near-optimal algorithm. Our evaluation adds optimizations that improve empirical performance, and shows that our algorithms learn orders of magnitude more quickly than previous approaches.

PDF BibTeX