Statistical Analysis and Parameter Selection for Mapper

Mathieu Carrière, Bertrand Michel, Steve Oudot.

Year: 2018, Volume: 19, Issue: 12, Pages: 1−39


Abstract

In this article, we study the question of the statistical convergence of the 1-dimensional Mapper to its continuous analogue, the Reeb graph. We show that the Mapper is an optimal estimator of the Reeb graph, which gives, as a byproduct, a method to automatically tune its parameters and compute confidence regions on its topological features, such as its loops and flares. This allows to circumvent the issue of testing a large grid of parameters and keeping the most stable ones in the brute-force setting, which is widely used in visualization, clustering and feature selection with the Mapper.

PDF BibTeX