DPPy: DPP Sampling with Python

Guillaume Gautier, Guillermo Polito, Rémi Bardenet, Michal Valko.

Year: 2019, Volume: 20, Issue: 180, Pages: 1−7


Determinantal point processes (DPPs) are specific probability distributions over clouds of points that are used as models and computational tools across physics, probability, statistics, and more recently machine learning. Sampling from DPPs is a challenge and therefore we present DPPy, a Python toolbox that gathers known exact and approximate sampling algorithms for both finite and continuous DPPs. The project is hosted on GitHub, and equipped with an extensive documentation.

PDF BibTeX code