JMLR Volume 7
-
Statistical Comparisons of Classifiers over Multiple Data Sets
-
Incremental Algorithms for Hierarchical Classification
Nicoló Cesa-Bianchi, Claudio Gentile, Luca Zaniboni (2):31−54, 2006 PDF BibTeX
-
On the Complexity of Learning Lexicographic Strategies
-
Generalized Bradley-Terry Models and Multi-Class Probability Estimates
Tzu-Kuo Huang, Ruby C. Weng, Chih-Jen Lin (4):85−115, 2006 PDF BibTeX
-
Bounds for Linear Multi-Task Learning
-
Active Learning in Approximately Linear Regression Based on Conditional Expectation of Generalization Error
-
MinReg: A Scalable Algorithm for Learning Parsimonious Regulatory Networks in Yeast and Mammals
Dana Pe'er, Amos Tanay, Aviv Regev (7):167−189, 2006 PDF BibTeX
-
Learning the Structure of Linear Latent Variable Models
Ricardo Silva, Richard Scheine, Clark Glymour, Peter Spirtes (8):191−246, 2006 PDF BibTeX
-
In Search of Non-Gaussian Components of a High-Dimensional Distribution
Gilles Blanchard, Motoaki Kawanabe, Masashi Sugiyama, Vladimir Spokoiny, Klaus-Robert Müller (9):247−282, 2006 PDF BibTeX
-
Some Discriminant-Based PAC Algorithms
-
Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting
Andrea Passerini, Paolo Frasconi, Luc De Raedt (11):307−342, 2006 PDF BibTeX
-
Using Machine Learning to Guide Architecture Simulation
Greg Hamerly, Erez Perelman, Jeremy Lau, Brad Calder, Timothy Sherwood (12):343−378, 2006 PDF BibTeX
-
Superior Guarantees for Sequential Prediction and Lossless Compression via Alphabet Decomposition
-
Geometric Variance Reduction in Markov Chains: Application to Value Function and Gradient Estimation
-
Inductive Synthesis of Functional Programs: An Explanation Based Generalization Approach
Emanuel Kitzelmann, Ute Schmid (15):429−454, 2006 PDF BibTeX
-
Optimising Kernel Parameters and Regularisation Coefficients for Non-linear Discriminant Analysis
Tonatiuh Peña Centeno, Neil D. Lawrence (16):455−491, 2006 PDF BibTeX
-
Learning Recursive Control Programs from Problem Solving
-
Learning Coordinate Covariances via Gradients
Sayan Mukherjee, Ding-Xuan Zhou (18):519−549, 2006 PDF BibTeX
-
Online Passive-Aggressive Algorithms
Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, Yoram Singer (19):551−585, 2006 PDF BibTeX
-
Toward Attribute Efficient Learning of Decision Lists and Parities
Adam R. Klivans, Rocco A. Servedio (20):587−602, 2006 PDF BibTeX
-
A Direct Method for Building Sparse Kernel Learning Algorithms
Mingrui Wu, Bernhard Schölkopf, Gökhan Bakir (21):603−624, 2006 PDF BibTeX
-
Stochastic Complexities of Gaussian Mixtures in Variational Bayesian Approximation
Kazuho Watanabe, Sumio Watanabe (22):625−644, 2006 PDF BibTeX
-
Pattern Recognition for Conditionally Independent Data
-
Learning Minimum Volume Sets
Clayton D. Scott, Robert D. Nowak (24):665−704, 2006 PDF BibTeX
-
Some Theory for Generalized Boosting Algorithms
Peter J. Bickel, Ya'acov Ritov, Alon Zakai (25):705−732, 2006 PDF BibTeX
-
QP Algorithms with Guaranteed Accuracy and Run Time for Support Vector Machines
Don Hush, Patrick Kelly, Clint Scovel, Ingo Steinwart (26):733−769, 2006 PDF BibTeX
-
Policy Gradient in Continuous Time
-
Learning Image Components for Object Recognition
-
Consistency and Convergence Rates of One-Class SVMs and Related Algorithms
Régis Vert, Jean-Philippe Vert (29):817−854, 2006 PDF BibTeX
-
Infinite-Ï Limits For Tikhonov Regularization
Ross A. Lippert, Ryan M. Rifkin (30):855−876, 2006 PDF BibTeX
-
Evolutionary Function Approximation for Reinforcement Learning
-
Rearrangement Clustering: Pitfalls, Remedies, and Applications
Sharlee Climer, Weixiong Zhang (32):919−943, 2006 PDF BibTeX
-
Segmental Hidden Markov Models with Random Effects for Waveform Modeling
-
Lower Bounds and Aggregation in Density Estimation
-
Quantile Regression Forests
-
Sparse Boosting
-
One-Class Novelty Detection for Seizure Analysis from Intracranial EEG
Andrew B. Gardner, Abba M. Krieger, George Vachtsevanos, Brian Litt (37):1025−1044, 2006 PDF BibTeX
-
A Graphical Representation of Equivalence Classes of AMP Chain Graphs
Alberto Roverato, Milan Studený (38):1045−1078, 2006 PDF BibTeX
-
Action Elimination and Stopping Conditions for the Multi-Armed Bandit and Reinforcement Learning Problems
Eyal Even-Dar, Shie Mannor, Yishay Mansour (39):1079−1105, 2006 PDF BibTeX
-
Step Size Adaptation in Reproducing Kernel Hilbert Space
S. V. N. Vishwanathan, Nicol N. Schraudolph, Alex J. Smola (40):1107−1133, 2006 PDF BibTeX
-
New Algorithms for Efficient High-Dimensional Nonparametric Classification
Ting Liu, Andrew W. Moore, Alexander Gray (41):1135−1158, 2006 PDF BibTeX
-
A Very Fast Learning Method for Neural Networks Based on Sensitivity Analysis
Enrique Castillo, Bertha Guijarro-Berdiñas, Oscar Fontenla-Romero, Amparo Alonso-Betanzos (42):1159−1182, 2006 PDF BibTeX
-
Computational and Theoretical Analysis of Null Space and Orthogonal Linear Discriminant Analysis
-
Worst-Case Analysis of Selective Sampling for Linear Classification
Nicoló Cesa-Bianchi, Claudio Gentile, Luca Zaniboni (44):1205−1230, 2006 PDF BibTeX
-
Nonparametric Quantile Estimation
Ichiro Takeuchi, Quoc V. Le, Timothy D. Sears, Alexander J. Smola (45):1231−1264, 2006 PDF BibTeX
-
The Interplay of Optimization and Machine Learning Research
Kristin P. Bennett, Emilio Parrado-Hernández (46):1265−1281, 2006 PDF BibTeX
-
Second Order Cone Programming Approaches for Handling Missing and Uncertain Data
Pannagadatta K. Shivaswamy, Chiranjib Bhattacharyya, Alexander J. Smola (47):1283−1314, 2006 PDF BibTeX
-
Ensemble Pruning Via Semi-definite Programming
Yi Zhang, Samuel Burer, W. Nick Street (48):1315−1338, 2006 PDF BibTeX
-
Linear Programs for Hypotheses Selection in Probabilistic Inference Models
Anders Bergkvist, Peter Damaschke, Marcel Lüthi (49):1339−1355, 2006 PDF BibTeX
-
Bayesian Network Learning with Parameter Constraints
Radu Stefan Niculescu, Tom M. Mitchell, R. Bharat Rao (50):1357−1383, 2006 PDF BibTeX
-
Learning Sparse Representations by Non-Negative Matrix Factorization and Sequential Cone Programming
Matthias Heiler, Christoph Schnörr (51):1385−1407, 2006 PDF BibTeX
-
Fast SDP Relaxations of Graph Cut Clustering, Transduction, and Other Combinatorial Problems
Tijl De Bie, Nello Cristianini (52):1409−1436, 2006 PDF BibTeX
-
Maximum-Gain Working Set Selection for SVMs
Tobias Glasmachers, Christian Igel (53):1437−1466, 2006 PDF BibTeX
-
Parallel Software for Training Large Scale Support Vector Machines on Multiprocessor Systems
Luca Zanni, Thomas Serafini, Gaetano Zanghirati (54):1467−1492, 2006 PDF BibTeX
-
Building Support Vector Machines with Reduced Classifier Complexity
S. Sathiya Keerthi, Olivier Chapelle, Dennis DeCoste (55):1493−1515, 2006 PDF BibTeX
-
Exact 1-Norm Support Vector Machines Via Unconstrained Convex Differentiable Minimization
-
Large Scale Multiple Kernel Learning
Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer, Bernhard Schölkopf (57):1531−1565, 2006 PDF BibTeX
-
Efficient Learning of Label Ranking by Soft Projections onto Polyhedra
Shai Shalev-Shwartz, Yoram Singer (58):1567−1599, 2006 PDF BibTeX
-
Kernel-Based Learning of Hierarchical Multilabel Classification Models
Juho Rousu, Craig Saunders, Sandor Szedmak, John Shawe-Taylor (59):1601−1626, 2006 PDF BibTeX
-
Structured Prediction, Dual Extragradient and Bregman Projections
Ben Taskar, Simon Lacoste-Julien, Michael I. Jordan (60):1627−1653, 2006 PDF BibTeX
-
Active Learning with Feedback on Features and Instances
Hema Raghavan, Omid Madani, Rosie Jones (61):1655−1686, 2006 PDF BibTeX
-
Large Scale Transductive SVMs
Ronan Collobert, Fabian Sinz, Jason Weston, Léon Bottou (62):1687−1712, 2006 PDF BibTeX
-
Considering Cost Asymmetry in Learning Classifiers
Francis R. Bach, David Heckerman, Eric Horvitz (63):1713−1741, 2006 PDF BibTeX
-
Learning Factor Graphs in Polynomial Time and Sample Complexity
Pieter Abbeel, Daphne Koller, Andrew Y. Ng (64):1743−1788, 2006 PDF BibTeX
-
Collaborative Multiagent Reinforcement Learning by Payoff Propagation
-
Estimating the “Wrong” Graphical Model: Benefits in the Computation-Limited Setting
-
Streamwise Feature Selection
Jing Zhou, Dean P. Foster, Robert A. Stine, Lyle H. Ungar (67):1861−1885, 2006 PDF BibTeX
-
Linear Programming Relaxations and Belief Propagation -- An Empirical Study
Chen Yanover, Talya Meltzer, Yair Weiss (68):1887−1907, 2006 PDF BibTeX
-
Incremental Support Vector Learning: Analysis, Implementation and Applications
Pavel Laskov, Christian Gehl, Stefan Krüger, Klaus-Robert Müller (69):1909−1936, 2006 PDF BibTeX
-
A Simulation-Based Algorithm for Ergodic Control of Markov Chains Conditioned on Rare Events
Shalabh Bhatnagar, Vivek S. Borkar, Madhukar Akarapu (70):1937−1962, 2006 PDF BibTeX
-
Learning Spectral Clustering, With Application To Speech Separation
Francis R. Bach, Michael I. Jordan (71):1963−2001, 2006 PDF BibTeX
-
A Linear Non-Gaussian Acyclic Model for Causal Discovery
Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvärinen, Antti Kerminen (72):2003−2030, 2006 PDF BibTeX
-
Walk-Sums and Belief Propagation in Gaussian Graphical Models
Dmitry M. Malioutov, Jason K. Johnson, Alan S. Willsky (73):2031−2064, 2006 PDF BibTeX
-
Distance Patterns in Structural Similarity
-
A Hierarchy of Support Vector Machines for Pattern Detection
-
Adaptive Prototype Learning Algorithms: Theoretical and Experimental Studies
Fu Chang, Chin-Chin Lin, Chi-Jen Lu (76):2125−2148, 2006 PDF BibTeX
-
A Scoring Function for Learning Bayesian Networks based on Mutual Information and Conditional Independence Tests
-
Noisy-OR Component Analysis and its Application to Link Analysis
Tomáš Šingliar, Miloš Hauskrecht (78):2189−2213, 2006 PDF BibTeX
-
Learning a Hidden Hypergraph
-
An Efficient Implementation of an Active Set Method for SVMs
-
Causal Graph Based Decomposition of Factored MDPs
Anders Jonsson, Andrew Barto (81):2259−2301, 2006 PDF BibTeX
-
Accurate Error Bounds for the Eigenvalues of the Kernel Matrix
-
Point-Based Value Iteration for Continuous POMDPs
Josep M. Porta, Nikos Vlassis, Matthijs T.J. Spaan, Pascal Poupart (83):2329−2367, 2006 PDF BibTeX
-
Learning Parts-Based Representations of Data
David A. Ross, Richard S. Zemel (84):2369−2397, 2006 PDF BibTeX
-
Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples
Mikhail Belkin, Partha Niyogi, Vikas Sindhwani (85):2399−2434, 2006 PDF BibTeX
-
Consistency of Multiclass Empirical Risk Minimization Methods Based on Convex Loss
-
Bounds for the Loss in Probability of Correct Classification Under Model Based Approximation
-
Estimation of Gradients and Coordinate Covariation in Classification
-
Expectation Correction for Smoothed Inference in Switching Linear Dynamical Systems
-
On Model Selection Consistency of Lasso
-
Stability Properties of Empirical Risk Minimization over Donsker Classes
Andrea Caponnetto, Alexander Rakhlin (91):2565−2583, 2006 PDF BibTeX
-
Linear State-Space Models for Blind Source Separation
Rasmus Kongsgaard Olsson, Lars Kai Hansen (92):2585−2602, 2006 PDF BibTeX
-
On Representing and Generating Kernels by Fuzzy Equivalence Relations
-
A Robust Procedure For Gaussian Graphical Model Search From Microarray Data With p Larger Than n
Robert Castelo, Alberto Roverato (94):2621−2650, 2006 PDF BibTeX
-
Universal Kernels
Charles A. Micchelli, Yuesheng Xu, Haizhang Zhang (95):2651−2667, 2006 PDF BibTeX
-
Machine Learning for Computer Security
Philip K. Chan, Richard P. Lippmann (96):2669−2672, 2006 PDF BibTeX
-
Spam Filtering Using Statistical Data Compression Models
Andrej Bratko, Gordon V. Cormack, Bogdan Filipič, Thomas R. Lynam, Blaž Zupan (97):2673−2698, 2006 PDF BibTeX
-
Spam Filtering Based On The Analysis Of Text Information Embedded Into Images
Giorgio Fumera, Ignazio Pillai, Fabio Roli (98):2699−2720, 2006 PDF BibTeX
-
Learning to Detect and Classify Malicious Executables in the Wild
J. Zico Kolter, Marcus A. Maloof (99):2721−2744, 2006 PDF BibTeX
-
On Inferring Application Protocol Behaviors in Encrypted Network Traffic
Charles V. Wright, Fabian Monrose, Gerald M. Masson (100):2745−2769, 2006 PDF BibTeX