JMLR Volume 6
-
Asymptotic Model Selection for Naive Bayesian Networks
-
Dimension Reduction in Text Classification with Support Vector Machines
Hyunsoo Kim, Peg Howland, Haesun Park (2):37−53, 2005 PDF BibTeX
-
Stability of Randomized Learning Algorithms
Andre Elisseeff, Theodoros Evgeniou, Massimiliano Pontil (3):55−79, 2005 PDF BibTeX
-
Learning Hidden Variable Networks: The Information Bottleneck Approach
-
Diffusion Kernels on Statistical Manifolds
-
Information Bottleneck for Gaussian Variables
Gal Chechik, Amir Globerson, Naftali Tishby, Yair Weiss (6):165−188, 2005 PDF BibTeX
-
Multiclass Boosting for Weak Classifiers
Günther Eibl, Karl-Peter Pfeiffer (7):189−210, 2005 PDF BibTeX
-
A Classification Framework for Anomaly Detection
Ingo Steinwart, Don Hush, Clint Scovel (8):211−232, 2005 PDF BibTeX
-
Denoising Source Separation
-
Tutorial on Practical Prediction Theory for Classification
-
Generalization Bounds and Complexities Based on Sparsity and Clustering for Convex Combinations of Functions from Random Classes
-
A Modified Finite Newton Method for Fast Solution of Large Scale Linear SVMs
S. Sathiya Keerthi, Dennis DeCoste (12):341−361, 2005 PDF BibTeX
-
Core Vector Machines: Fast SVM Training on Very Large Data Sets
Ivor W. Tsang, James T. Kwok, Pak-Ming Cheung (13):363−392, 2005 PDF BibTeX
-
Generalization Bounds for the Area Under the ROC Curve
Shivani Agarwal, Thore Graepel, Ralf Herbrich, Sariel Har-Peled, Dan Roth (14):393−425, 2005 PDF BibTeX
-
Learning with Decision Lists of Data-Dependent Features
Mario Marchand, Marina Sokolova (15):427−451, 2005 PDF BibTeX
-
Estimating Functions for Blind Separation When Sources Have Variance Dependencies
Motoaki Kawanabe, Klaus-Robert Müller (16):453−482, 2005 PDF BibTeX
-
Characterization of a Family of Algorithms for Generalized Discriminant Analysis on Undersampled Problems
-
Tree-Based Batch Mode Reinforcement Learning
Damien Ernst, Pierre Geurts, Louis Wehenkel (18):503−556, 2005 PDF BibTeX
-
Learning Module Networks
Eran Segal, Dana Pe'er, Aviv Regev, Daphne Koller, Nir Friedman (19):557−588, 2005 PDF BibTeX
-
Active Learning to Recognize Multiple Types of Plankton
Tong Luo, Kurt Kramer, Dmitry B. Goldgof, Lawrence O. Hall, Scott Samson, Andrew Remsen, Thomas Hopkins (20):589−613, 2005 PDF BibTeX
-
Learning Multiple Tasks with Kernel Methods
Theodoros Evgeniou, Charles A. Micchelli, Massimiliano Pontil (21):615−637, 2005 PDF BibTeX
-
Adaptive Online Prediction by Following the Perturbed Leader
-
Variational Message Passing
John Winn, Christopher M. Bishop (23):661−694, 2005 PDF BibTeX
-
Estimation of Non-Normalized Statistical Models by Score Matching
-
Smooth ε-Insensitive Regression by Loss Symmetrization
Ofer Dekel, Shai Shalev-Shwartz, Yoram Singer (25):711−741, 2005 PDF BibTeX
-
Quasi-Geodesic Neural Learning Algorithms Over the Orthogonal Group: A Tutorial
-
Machine Learning Methods for Predicting Failures in Hard Drives: A Multiple-Instance Application
Joseph F. Murray, Gordon F. Hughes, Kenneth Kreutz-Delgado (27):783−816, 2005 PDF BibTeX
-
Multiclass Classification with Multi-Prototype Support Vector Machines
Fabio Aiolli, Alessandro Sperduti (28):817−850, 2005 PDF BibTeX
-
Prioritization Methods for Accelerating MDP Solvers
-
Learning from Examples as an Inverse Problem
Ernesto De Vito, Lorenzo Rosasco, Andrea Caponnetto, Umberto De Giovannini, Francesca Odone (30):883−904, 2005 PDF BibTeX
-
Loopy Belief Propagation: Convergence and Effects of Message Errors
Alexander T. Ihler, John W. Fisher III, Alan S. Willsky (31):905−936, 2005 PDF BibTeX
-
Learning a Mahalanobis Metric from Equivalence Constraints
Aharon Bar-Hillel, Tomer Hertz, Noam Shental, Daphna Weinshall (32):937−965, 2005 PDF BibTeX
-
Algorithmic Stability and Meta-Learning
-
Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection
Koji Tsuda, Gunnar Rätsch, Manfred K. Warmuth (34):995−1018, 2005 PDF BibTeX
-
Gaussian Processes for Ordinal Regression
-
Learning the Kernel with Hyperkernels
Cheng Soon Ong, Alexander J. Smola, Robert C. Williamson (36):1043−1071, 2005 PDF BibTeX
-
A Generalization Error for Q-Learning
-
Learning the Kernel Function via Regularization
Charles A. Micchelli, Massimiliano Pontil (38):1099−1125, 2005 PDF BibTeX
-
Analysis of Variance of Cross-Validation Estimators of the Generalization Error
Marianthi Markatou, Hong Tian, Shameek Biswas, George Hripcsak (39):1127−1168, 2005 PDF BibTeX
-
Semigroup Kernels on Measures
Marco Cuturi, Kenji Fukumizu, Jean-Philippe Vert (40):1169−1198, 2005 PDF BibTeX
-
Separating a Real-Life Nonlinear Image Mixture
-
Concentration Bounds for Unigram Language Models
Evgeny Drukh, Yishay Mansour (42):1231−1264, 2005 PDF BibTeX
-
An MDP-Based Recommender System
Guy Shani, David Heckerman, Ronen I. Brafman (43):1265−1295, 2005 PDF BibTeX
-
Universal Algorithms for Learning Theory Part I : Piecewise Constant Functions
Peter Binev, Albert Cohen, Wolfgang Dahmen, Ronald DeVore, Vladimir Temlyakov (44):1297−1321, 2005 PDF BibTeX
-
Efficient Computation of Gapped Substring Kernels on Large Alphabets
Juho Rousu, John Shawe-Taylor (45):1323−1344, 2005 PDF BibTeX
-
Clustering on the Unit Hypersphere using von Mises-Fisher Distributions
Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, Suvrit Sra (46):1345−1382, 2005 PDF BibTeX
-
Inner Product Spaces for Bayesian Networks
Atsuyoshi Nakamura, Michael Schmitt, Niels Schmitt, Hans Ulrich Simon (47):1383−1403, 2005 PDF BibTeX
-
Maximum Margin Algorithms with Boolean Kernels
Roni Khardon, Rocco A. Servedio (48):1405−1429, 2005 PDF BibTeX
-
A Bayes Optimal Approach for Partitioning the Values of Categorical Attributes
-
Large Margin Methods for Structured and Interdependent Output Variables
Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin Altun (50):1453−1484, 2005 PDF BibTeX
-
Frames, Reproducing Kernels, Regularization and Learning
Alain Rakotomamonjy, Stéphane Canu (51):1485−1515, 2005 PDF BibTeX
-
Local Propagation in Conditional Gaussian Bayesian Networks
-
A Bayesian Model for Supervised Clustering with the Dirichlet Process Prior
-
Fast Kernel Classifiers with Online and Active Learning
Antoine Bordes, Seyda Ertekin, Jason Weston, Léon Bottou (54):1579−1619, 2005 PDF BibTeX
-
Managing Diversity in Regression Ensembles
Gavin Brown, Jeremy L. Wyatt, Peter Tiňo (55):1621−1650, 2005 PDF BibTeX
-
Active Coevolutionary Learning of Deterministic Finite Automata
-
Assessing Approximate Inference for Binary Gaussian Process Classification
Malte Kuss, Carl Edward Rasmussen (57):1679−1704, 2005 PDF BibTeX
-
Clustering with Bregman Divergences
Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, Joydeep Ghosh (58):1705−1749, 2005 PDF BibTeX
-
Combining Information Extraction Systems Using Voting and Stacked Generalization
Georgios Sigletos, Georgios Paliouras, Constantine D. Spyropoulos, Michalis Hatzopoulos (59):1751−1782, 2005 PDF BibTeX
-
Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models
-
A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data
-
Feature Selection for Unsupervised and Supervised Inference: The Emergence of Sparsity in a Weight-Based Approach
-
Working Set Selection Using Second Order Information for Training Support Vector Machines
Rong-En Fan, Pai-Hsuen Chen, Chih-Jen Lin (63):1889−1918, 2005 PDF BibTeX
-
New Horn Revision Algorithms
Judy Goldsmith, Robert H. Sloan (64):1919−1938, 2005 PDF BibTeX
-
A Unifying View of Sparse Approximate Gaussian Process Regression
Joaquin Quiñonero-Candela, Carl Edward Rasmussen (65):1939−1959, 2005 PDF BibTeX
-
What's Strange About Recent Events (WSARE): An Algorithm for the Early Detection of Disease Outbreaks
Weng-Keen Wong, Andrew Moore, Gregory Cooper, Michael Wagner (66):1961−1998, 2005 PDF BibTeX
-
Change Point Problems in Linear Dynamical Systems
-
Asymptotics in Empirical Risk Minimization
Leila Mohammadi, Sara van de Geer (68):2027−2047, 2005 PDF BibTeX
-
Convergence Theorems for Generalized Alternating Minimization Procedures
Asela Gunawardana, William Byrne (69):2049−2073, 2005 PDF BibTeX
-
Kernel Methods for Measuring Independence
Arthur Gretton, Ralf Herbrich, Alexander Smola, Olivier Bousquet, Bernhard Schölkopf (70):2075−2129, 2005 PDF BibTeX
-
Efficient Margin Maximizing with Boosting
Gunnar Rätsch, Manfred K. Warmuth (71):2131−2152, 2005 PDF BibTeX
-
On the Nystrom Method for Approximating a Gram Matrix for Improved Kernel-Based Learning
Petros Drineas, Michael W. Mahoney (72):2153−2175, 2005 PDF BibTeX
-
Expectation Consistent Approximate Inference