Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

JMLR Volume 25

On Truthing Issues in Supervised Classification
Jonathan K. Su; (1):1−91, 2024.
[abs][pdf][bib]

Lower Complexity Bounds of Finite-Sum Optimization Problems: The Results and Construction
Yuze Han, Guangzeng Xie, Zhihua Zhang; (2):1−86, 2024.
[abs][pdf][bib]

Power of knockoff: The impact of ranking algorithm, augmented design, and symmetric statistic
Zheng Tracy Ke, Jun S. Liu, Yucong Ma; (3):1−67, 2024.
[abs][pdf][bib]

Fast Policy Extragradient Methods for Competitive Games with Entropy Regularization
Shicong Cen, Yuting Wei, Yuejie Chi; (4):1−48, 2024.
[abs][pdf][bib]

Seeded Graph Matching for the Correlated Gaussian Wigner Model via the Projected Power Method
Ernesto Araya, Guillaume Braun, Hemant Tyagi; (5):1−43, 2024.
[abs][pdf][bib]      [code]

Model-Free Representation Learning and Exploration in Low-Rank MDPs
Aditya Modi, Jinglin Chen, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal; (6):1−76, 2024.
[abs][pdf][bib]

Decorrelated Variable Importance
Isabella Verdinelli, Larry Wasserman; (7):1−27, 2024.
[abs][pdf][bib]

On Efficient and Scalable Computation of the Nonparametric Maximum Likelihood Estimator in Mixture Models
Yangjing Zhang, Ying Cui, Bodhisattva Sen, Kim-Chuan Toh; (8):1−46, 2024.
[abs][pdf][bib]      [code]

Exploration, Exploitation, and Engagement in Multi-Armed Bandits with Abandonment
Zixian Yang, Xin Liu, Lei Ying; (9):1−55, 2024.
[abs][pdf][bib]

Modeling Random Networks with Heterogeneous Reciprocity
Daniel Cirkovic, Tiandong Wang; (10):1−40, 2024.
[abs][pdf][bib]

Estimating the Minimizer and the Minimum Value of a Regression Function under Passive Design
Arya Akhavan, Davit Gogolashvili, Alexandre B. Tsybakov; (11):1−37, 2024.
[abs][pdf][bib]

Critically Assessing the State of the Art in Neural Network Verification
Matthias König, Annelot W. Bosman, Holger H. Hoos, Jan N. van Rijn; (12):1−53, 2024.
[abs][pdf][bib]

A Comparison of Continuous-Time Approximations to Stochastic Gradient Descent
Stefan Ankirchner, Stefan Perko; (13):1−55, 2024.
[abs][pdf][bib]

Improving physics-informed neural networks with meta-learned optimization
Alex Bihlo; (14):1−26, 2024.
[abs][pdf][bib]

On the Effect of Initialization: The Scaling Path of 2-Layer Neural Networks
Sebastian Neumayer, Lénaïc Chizat, Michael Unser; (15):1−24, 2024.
[abs][pdf][bib]

Localized Debiased Machine Learning: Efficient Inference on Quantile Treatment Effects and Beyond
Nathan Kallus, Xiaojie Mao, Masatoshi Uehara; (16):1−59, 2024.
[abs][pdf][bib]      [code]

On Sufficient Graphical Models
Bing Li, Kyongwon Kim; (17):1−64, 2024.
[abs][pdf][bib]

Black Box Variational Inference with a Deterministic Objective: Faster, More Accurate, and Even More Black Box
Ryan Giordano, Martin Ingram, Tamara Broderick; (18):1−39, 2024.
[abs][pdf][bib]      [code]

Nonparametric Inference under B-bits Quantization
Kexuan Li, Ruiqi Liu, Ganggang Xu, Zuofeng Shang; (19):1−68, 2024.
[abs][pdf][bib]

Iterate Averaging in the Quest for Best Test Error
Diego Granziol, Nicholas P. Baskerville, Xingchen Wan, Samuel Albanie, Stephen Roberts; (20):1−55, 2024.
[abs][pdf][bib]      [code]

Pursuit of the Cluster Structure of Network Lasso: Recovery Condition and Non-convex Extension
Shotaro Yagishita, Jun-ya Gotoh; (21):1−42, 2024.
[abs][pdf][bib]

On the Generalization of Stochastic Gradient Descent with Momentum
Ali Ramezani-Kebrya, Kimon Antonakopoulos, Volkan Cevher, Ashish Khisti, Ben Liang; (22):1−56, 2024.
[abs][pdf][bib]

Post-Regularization Confidence Bands for Ordinary Differential Equations
Xiaowu Dai, Lexin Li; (23):1−51, 2024.
[abs][pdf][bib]

Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Hao Liu, Haizhao Yang, Minshuo Chen, Tuo Zhao, Wenjing Liao; (24):1−67, 2024.
[abs][pdf][bib]

On Tail Decay Rate Estimation of Loss Function Distributions
Etrit Haxholli, Marco Lorenzi; (25):1−47, 2024.
[abs][pdf][bib]      [code]

Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
Alexander Terenin, David R. Burt, Artem Artemev, Seth Flaxman, Mark van der Wilk, Carl Edward Rasmussen, Hong Ge; (26):1−36, 2024.
[abs][pdf][bib]      [code]

Optimal Bump Functions for Shallow ReLU networks: Weight Decay, Depth Separation, Curse of Dimensionality
Stephan Wojtowytsch; (27):1−49, 2024.
[abs][pdf][bib]

Additive smoothing error in backward variational inference for general state-space models
Mathis Chagneux, Elisabeth Gassiat, Pierre Gloaguen, Sylvain Le Corff; (28):1−33, 2024.
[abs][pdf][bib]

Rates of convergence for density estimation with generative adversarial networks
Nikita Puchkin, Sergey Samsonov, Denis Belomestny, Eric Moulines, Alexey Naumov; (29):1−47, 2024.
[abs][pdf][bib]

Stochastic Modified Flows, Mean-Field Limits and Dynamics of Stochastic Gradient Descent
Benjamin Gess, Sebastian Kassing, Vitalii Konarovskyi; (30):1−27, 2024.
[abs][pdf][bib]

Sample-efficient Adversarial Imitation Learning
Dahuin Jung, Hyungyu Lee, Sungroh Yoon; (31):1−32, 2024.
[abs][pdf][bib]

Heterogeneous-Agent Reinforcement Learning
Yifan Zhong, Jakub Grudzien Kuba, Xidong Feng, Siyi Hu, Jiaming Ji, Yaodong Yang; (32):1−67, 2024.
[abs][pdf][bib]      [code]

Pygmtools: A Python Graph Matching Toolkit
Runzhong Wang, Ziao Guo, Wenzheng Pan, Jiale Ma, Yikai Zhang, Nan Yang, Qi Liu, Longxuan Wei, Hanxue Zhang, Chang Liu, Zetian Jiang, Xiaokang Yang, Junchi Yan; (33):1−7, 2024. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Effect-Invariant Mechanisms for Policy Generalization
Sorawit Saengkyongam, Niklas Pfister, Predrag Klasnja, Susan Murphy, Jonas Peters; (34):1−36, 2024.
[abs][pdf][bib]

Deep Network Approximation: Beyond ReLU to Diverse Activation Functions
Shijun Zhang, Jianfeng Lu, Hongkai Zhao; (35):1−39, 2024.
[abs][pdf][bib]

Sparse NMF with Archetypal Regularization: Computational and Robustness Properties
Kayhan Behdin, Rahul Mazumder; (36):1−62, 2024.
[abs][pdf][bib]      [code]

Distributed Gaussian Mean Estimation under Communication Constraints: Optimal Rates and Communication-Efficient Algorithms
T. Tony Cai, Hongji Wei; (37):1−63, 2024.
[abs][pdf][bib]

Convergence for nonconvex ADMM, with applications to CT imaging
Rina Foygel Barber, Emil Y. Sidky; (38):1−46, 2024.
[abs][pdf][bib]      [code]

On the Sample Complexity and Metastability of Heavy-tailed Policy Search in Continuous Control
Amrit Singh Bedi, Anjaly Parayil, Junyu Zhang, Mengdi Wang, Alec Koppel; (39):1−58, 2024.
[abs][pdf][bib]

Survival Kernets: Scalable and Interpretable Deep Kernel Survival Analysis with an Accuracy Guarantee
George H. Chen; (40):1−78, 2024.
[abs][pdf][bib]      [code]

Personalized PCA: Decoupling Shared and Unique Features
Naichen Shi, Raed Al Kontar; (41):1−82, 2024.
[abs][pdf][bib]      [code]

Invariant and Equivariant Reynolds Networks
Akiyoshi Sannai, Makoto Kawano, Wataru Kumagai; (42):1−36, 2024. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Mean-Square Analysis of Discretized Itô Diffusions for Heavy-tailed Sampling
Ye He, Tyler Farghly, Krishnakumar Balasubramanian, Murat A. Erdogdu; (43):1−44, 2024.
[abs][pdf][bib]

Multiple Descent in the Multiple Random Feature Model
Xuran Meng, Jianfeng Yao, Yuan Cao; (44):1−49, 2024.
[abs][pdf][bib]

Probabilistic Forecasting with Generative Networks via Scoring Rule Minimization
Lorenzo Pacchiardi, Rilwan A. Adewoyin, Peter Dueben, Ritabrata Dutta; (45):1−64, 2024.
[abs][pdf][bib]      [code]

A Multilabel Classification Framework for Approximate Nearest Neighbor Search
Ville Hyvönen, Elias Jääsaari, Teemu Roos; (46):1−51, 2024.
[abs][pdf][bib]      [code]

Efficient Modality Selection in Multimodal Learning
Yifei He, Runxiang Cheng, Gargi Balasubramaniam, Yao-Hung Hubert Tsai, Han Zhao; (47):1−39, 2024.
[abs][pdf][bib]

Adam-family Methods for Nonsmooth Optimization with Convergence Guarantees
Nachuan Xiao, Xiaoyin Hu, Xin Liu, Kim-Chuan Toh; (48):1−53, 2024.
[abs][pdf][bib]

Trained Transformers Learn Linear Models In-Context
Ruiqi Zhang, Spencer Frei, Peter L. Bartlett; (49):1−55, 2024.
[abs][pdf][bib]

© JMLR .
Mastodon