JMLR Volume 12
-
Exploitation of Machine Learning Techniques in Modelling Phrase Movements for Machine Translation
Yizhao Ni, Craig Saunders, Sandor Szedmak, Mahesan Niranjan (1):1−30, 2011 PDF BibTeX
-
Improved Moves for Truncated Convex Models
M. Pawan Kumar, Olga Veksler, Philip H.S. Torr (2):31−67, 2011 PDF BibTeX
-
CARP: Software for Fishing Out Good Clustering Algorithms
Volodymyr Melnykov, Ranjan Maitra (3):69−73, 2011 codePDF BibTeX
-
Multitask Sparsity via Maximum Entropy Discrimination
-
Bayesian Generalized Kernel Mixed Models
Zhihua Zhang, Guang Dai, Michael I. Jordan (5):111−139, 2011 PDF BibTeX
-
Training SVMs Without Offset
Ingo Steinwart, Don Hush, Clint Scovel (6):141−202, 2011 PDF BibTeX
-
Logistic Stick-Breaking Process
Lu Ren, Lan Du, Lawrence Carin, David Dunson (7):203−239, 2011 PDF BibTeX
-
Online Learning in Case of Unbounded Losses Using Follow the Perturbed Leader Algorithm
-
A Bayesian Approximation Method for Online Ranking
-
Cumulative Distribution Networks and the Derivative-sum-product Algorithm: Models and Inference for Cumulative Distribution Functions on Graphs
-
Models of Cooperative Teaching and Learning
Sandra Zilles, Steffen Lange, Robert Holte, Martin Zinkevich (11):349−384, 2011 PDF BibTeX
-
Operator Norm Convergence of Spectral Clustering on Level Sets
-
Approximate Marginals in Latent Gaussian Models
-
Posterior Sparsity in Unsupervised Dependency Parsing
Jennifer Gillenwater, Kuzman Ganchev, João Graça, Fernando Pereira, Ben Taskar (14):455−490, 2011 PDF BibTeX
-
Learning Multi-modal Similarity
-
Minimum Description Length Penalization for Group and Multi-Task Sparse Learning
Paramveer S. Dhillon, Dean Foster, Lyle H. Ungar (16):525−564, 2011 PDF BibTeX
-
Variable Sparsity Kernel Learning
Jonathan Aflalo, Aharon Ben-Tal, Chiranjib Bhattacharyya, Jagarlapudi Saketha Nath, Sankaran Raman (17):565−592, 2011 PDF BibTeX
-
Regression on Fixed-Rank Positive Semidefinite Matrices: A Riemannian Approach
Gilles Meyer, Silvère Bonnabel, Rodolphe Sepulchre (18):593−625, 2011 PDF BibTeX
-
Parameter Screening and Optimisation for ILP using Designed Experiments
Ashwin Srinivasan, Ganesh Ramakrishnan (19):627−662, 2011 PDF BibTeX
-
Efficient Structure Learning of Bayesian Networks using Constraints
-
Inverse Reinforcement Learning in Partially Observable Environments
-
Information, Divergence and Risk for Binary Experiments
Mark D. Reid, Robert C. Williamson (22):731−817, 2011 PDF BibTeX
-
Learning Transformation Models for Ranking and Survival Analysis
Vanya Van Belle, Kristiaan Pelckmans, Johan A. K. Suykens, Sabine Van Huffel (23):819−862, 2011 PDF BibTeX
-
Sparse Linear Identifiable Multivariate Modeling
-
Forest Density Estimation
Han Liu, Min Xu, Haijie Gu, Anupam Gupta, John Lafferty, Larry Wasserman (25):907−951, 2011 PDF BibTeX
-
lp-Norm Multiple Kernel Learning
Marius Kloft, Ulf Brefeld, Sören Sonnenburg, Alexander Zien (26):953−997, 2011 PDF BibTeX
-
Unsupervised Similarity-Based Risk Stratification for Cardiovascular Events Using Long-Term Time-Series Data
-
Two Distributed-State Models For Generating High-Dimensional Time Series
Graham W. Taylor, Geoffrey E. Hinton, Sam T. Roweis (28):1025−1068, 2011 PDF BibTeX
-
Differentially Private Empirical Risk Minimization
Kamalika Chaudhuri, Claire Monteleoni, Anand D. Sarwate (29):1069−1109, 2011 PDF BibTeX
-
Anechoic Blind Source Separation Using Wigner Marginals
-
Laplacian Support Vector Machines Trained in the Primal
Stefano Melacci, Mikhail Belkin (31):1149−1184, 2011 PDF BibTeX
-
The Indian Buffet Process: An Introduction and Review
Thomas L. Griffiths, Zoubin Ghahramani (32):1185−1224, 2011 PDF BibTeX
-
DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian Structural Equation Model
Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Aapo Hyvärinen, Yoshinobu Kawahara, Takashi Washio, Patrik O. Hoyer, Kenneth Bollen (33):1225−1248, 2011 PDF BibTeX
-
Locally Defined Principal Curves and Surfaces
Umut Ozertem, Deniz Erdogmus (34):1249−1286, 2011 PDF BibTeX
-
Better Algorithms for Benign Bandits
-
A Family of Simple Non-Parametric Kernel Learning Algorithms
Jinfeng Zhuang, Ivor W. Tsang, Steven C.H. Hoi (36):1313−1347, 2011 PDF BibTeX
-
Faster Algorithms for Max-Product Message-Passing
Julian J. McAuley, Tibério S. Caetano (37):1349−1388, 2011 PDF BibTeX
-
Clustering Algorithms for Chains
-
Introduction to the Special Topic on Grammar Induction, Representation of Language and Language Learning
Dorota Głowacka, John Shawe-Taylor, Alex Clark, Colin de la Higuera, Mark Johnson (39):1425−1428, 2011 PDF BibTeX
-
Learning a Robust Relevance Model for Search Using Kernel Methods
Wei Wu, Jun Xu, Hang Li, Satoshi Oyama (40):1429−1458, 2011 PDF BibTeX
-
Computationally Efficient Convolved Multiple Output Gaussian Processes
Mauricio A. Álvarez, Neil D. Lawrence (41):1459−1500, 2011 PDF BibTeX
-
Learning from Partial Labels
Timothee Cour, Ben Sapp, Ben Taskar (42):1501−1536, 2011 PDF BibTeX
-
Super-Linear Convergence of Dual Augmented Lagrangian Algorithm for Sparsity Regularized Estimation
Ryota Tomioka, Taiji Suzuki, Masashi Sugiyama (43):1537−1586, 2011 PDF BibTeX
-
Double Updating Online Learning
Peilin Zhao, Steven C.H. Hoi, Rong Jin (44):1587−1615, 2011 PDF BibTeX
-
Learning High-Dimensional Markov Forest Distributions: Analysis of Error Rates
Vincent Y.F. Tan, Animashree Anandkumar, Alan S. Willsky (45):1617−1653, 2011 PDF BibTeX
-
X-Armed Bandits
Sébastien Bubeck, Rémi Munos, Gilles Stoltz, Csaba Szepesvári (46):1655−1695, 2011 PDF BibTeX
-
Domain Decomposition Approach for Fast Gaussian Process Regression of Large Spatial Data Sets
Chiwoo Park, Jianhua Z. Huang, Yu Ding (47):1697−1728, 2011 PDF BibTeX
-
A Bayesian Approach for Learning and Planning in Partially Observable Markov Decision Processes
Stéphane Ross, Joelle Pineau, Brahim Chaib-draa, Pierre Kreitmann (48):1729−1770, 2011 PDF BibTeX
-
Learning Latent Tree Graphical Models
Myung Jin Choi, Vincent Y.F. Tan, Animashree Anandkumar, Alan S. Willsky (49):1771−1812, 2011 PDF BibTeX
-
Hyper-Sparse Optimal Aggregation
Stéphane Gaîffas, Guillaume Lecué (50):1813−1833, 2011 PDF BibTeX
-
A Refined Margin Analysis for Boosting Algorithms via Equilibrium Margin
Liwei Wang, Masashi Sugiyama, Zhaoxiang Jing, Cheng Yang, Zhi-Hua Zhou, Jufu Feng (51):1835−1863, 2011 PDF BibTeX
-
Stochastic Methods for l1-regularized Loss Minimization
Shai Shalev-Shwartz, Ambuj Tewari (52):1865−1892, 2011 PDF BibTeX
-
Internal Regret with Partial Monitoring: Calibration-Based Optimal Algorithms
-
Dirichlet Process Mixtures of Generalized Linear Models
Lauren A. Hannah, David M. Blei, Warren B. Powell (54):1923−1953, 2011 PDF BibTeX
-
Kernel Regression in the Presence of Correlated Errors
Kris De Brabanter, Jos De Brabanter, Johan A.K. Suykens, Bart De Moor (55):1955−1976, 2011 PDF BibTeX
-
Generalized TD Learning
Tsuyoshi Ueno, Shin-ichi Maeda, Motoaki Kawanabe, Shin Ishii (56):1977−2020, 2011 PDF BibTeX
-
The arules R-Package Ecosystem: Analyzing Interesting Patterns from Large Transaction Data Sets
Michael Hahsler, Sudheer Chelluboina, Kurt Hornik, Christian Buchta (57):2021−2025, 2011 codePDF BibTeX
-
A Cure for Variance Inflation in High Dimensional Kernel Principal Component Analysis
Trine Julie Abrahamsen, Lars Kai Hansen (58):2027−2044, 2011 PDF BibTeX
-
Exploiting Best-Match Equations for Efficient Reinforcement Learning
Harm van Seijen, Shimon Whiteson, Hado van Hasselt, Marco Wiering (59):2045−2094, 2011 PDF BibTeX
-
Information Rates of Nonparametric Gaussian Process Methods
Aad van der Vaart, Harry van Zanten (60):2095−2119, 2011 PDF BibTeX
-
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
John Duchi, Elad Hazan, Yoram Singer (61):2121−2159, 2011 PDF BibTeX
-
On the Relation between Realizable and Nonrealizable Cases of the Sequence Prediction Problem
-
Discriminative Learning of Bayesian Networks via Factorized Conditional Log-Likelihood
Alexandra M. Carvalho, Teemu Roos, Arlindo L. Oliveira, Petri Myllymäki (63):2181−2210, 2011 PDF BibTeX
-
Multiple Kernel Learning Algorithms
Mehmet Gönen, Ethem Alpaydin (64):2211−2268, 2011 PDF BibTeX
-
Smoothness, Disagreement Coefficient, and the Label Complexity of Agnostic Active Learning
-
MSVMpack: A Multi-Class Support Vector Machine Package
Fabien Lauer, Yann Guermeur (66):2293−2296, 2011 codePDF BibTeX
-
Proximal Methods for Hierarchical Sparse Coding
Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, Francis Bach (67):2297−2334, 2011 PDF BibTeX
-
Producing Power-Law Distributions and Damping Word Frequencies with Two-Stage Language Models
Sharon Goldwater, Thomas L. Griffiths, Mark Johnson (68):2335−2382, 2011 PDF BibTeX
-
Waffles: A Machine Learning Toolkit
-
Universality, Characteristic Kernels and RKHS Embedding of Measures
Bharath K. Sriperumbudur, Kenji Fukumizu, Gert R.G. Lanckriet (70):2389−2410, 2011 PDF BibTeX
-
MULAN: A Java Library for Multi-Label Learning
Grigorios Tsoumakas, Eleftherios Spyromitros-Xioufis, Jozef Vilcek, Ioannis Vlahavas (71):2411−2414, 2011 codePDF BibTeX
-
Union Support Recovery in Multi-task Learning
Mladen Kolar, John Lafferty, Larry Wasserman (72):2415−2435, 2011 PDF BibTeX
-
Parallel Algorithm for Learning Optimal Bayesian Network Structure
Yoshinori Tamada, Seiya Imoto, Satoru Miyano (73):2437−2459, 2011 PDF BibTeX
-
Distance Dependent Chinese Restaurant Processes
David M. Blei, Peter I. Frazier (74):2461−2488, 2011 PDF BibTeX
-
LPmade: Link Prediction Made Easy
Ryan N. Lichtenwalter, Nitesh V. Chawla (75):2489−2492, 2011 codePDF BibTeX
-
Natural Language Processing (Almost) from Scratch
Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, Pavel Kuksa (76):2493−2537, 2011 PDF BibTeX
-
Weisfeiler-Lehman Graph Kernels
Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, Karsten M. Borgwardt (77):2539−2561, 2011 PDF BibTeX
-
Kernel Analysis of Deep Networks
Grégoire Montavon, Mikio L. Braun, Klaus-Robert Müller (78):2563−2581, 2011 PDF BibTeX
-
Theoretical Analysis of Bayesian Matrix Factorization
Shinichi Nakajima, Masashi Sugiyama (79):2583−2648, 2011 PDF BibTeX
-
Bayesian Co-Training
Shipeng Yu, Balaji Krishnapuram, Rómer Rosales, R. Bharat Rao (80):2649−2680, 2011 PDF BibTeX
-
Convex and Network Flow Optimization for Structured Sparsity
Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, Francis Bach (81):2681−2720, 2011 PDF BibTeX
-
Large Margin Hierarchical Classification with Mutually Exclusive Class Membership
Huixin Wang, Xiaotong Shen, Wei Pan (82):2721−2748, 2011 PDF BibTeX
-
Non-Parametric Estimation of Topic Hierarchies from Texts with Hierarchical Dirichlet Processes
Elias Zavitsanos, Georgios Paliouras, George A. Vouros (83):2749−2775, 2011 PDF BibTeX
-
Structured Variable Selection with Sparsity-Inducing Norms
Rodolphe Jenatton, Jean-Yves Audibert, Francis Bach (84):2777−2824, 2011 PDF BibTeX
-
Scikit-learn: Machine Learning in Python
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay (85):2825−2830, 2011 codePDF BibTeX
-
Neyman-Pearson Classification, Convexity and Stochastic Constraints
-
Efficient Learning with Partially Observed Attributes
Nicoló Cesa-Bianchi, Shai Shalev-Shwartz, Ohad Shamir (87):2857−2878, 2011 PDF BibTeX
-
Convergence Rates of Efficient Global Optimization Algorithms
-
On Equivalence Relationships Between Classification and Ranking Algorithms
Şeyda Ertekin, Cynthia Rudin (89):2905−2929, 2011 PDF BibTeX
-
Hierarchical Knowledge Gradient for Sequential Sampling
Martijn R.K. Mes, Warren B. Powell, Peter I. Frazier (90):2931−2974, 2011 PDF BibTeX
-
High-dimensional Covariance Estimation Based On Gaussian Graphical Models
Shuheng Zhou, Philipp Rütimann, Min Xu, Peter Bühlmann (91):2975−3026, 2011 PDF BibTeX
-
Robust Approximate Bilinear Programming for Value Function Approximation
Marek Petrik, Shlomo Zilberstein (92):3027−3063, 2011 PDF BibTeX
-
The Stationary Subspace Analysis Toolbox
Jan Saputra Müller, Paul von Bünau, Frank C. Meinecke, Franz J. Király, Klaus-Robert Müller (93):3065−3069, 2011 codePDF BibTeX
-
In All Likelihood, Deep Belief Is Not Enough
Lucas Theis, Sebastian Gerwinn, Fabian Sinz, Matthias Bethge (94):3071−3096, 2011 PDF BibTeX
-
Efficient and Effective Visual Codebook Generation Using Additive Kernels
Jianxin Wu, Wei-Chian Tan, James M. Rehg (95):3097−3118, 2011 PDF BibTeX
-
Unsupervised Supervised Learning II: Margin-Based Classification Without Labels
Krishnakumar Balasubramanian, Pinar Donmez, Guy Lebanon (96):3119−3145, 2011 PDF BibTeX
-
Adaptive Exact Inference in Graphical Models
Özgür Sümer, Umut A. Acar, Alexander T. Ihler, Ramgopal R. Mettu (97):3147−3186, 2011 PDF BibTeX
-
Group Lasso Estimation of High-dimensional Covariance Matrices
Jérémie Bigot, Rolando J. Biscay, Jean-Michel Loubes, Lillian Muñiz-Alvarez (98):3187−3225, 2011 PDF BibTeX
-
Robust Gaussian Process Regression with a Student-t Likelihood
Pasi Jylänki, Jarno Vanhatalo, Aki Vehtari (99):3227−3257, 2011 PDF BibTeX
-
The Sample Complexity of Dictionary Learning
Daniel Vainsencher, Shie Mannor, Alfred M. Bruckstein (100):3259−3281, 2011 PDF BibTeX
-
An Asymptotic Behaviour of the Marginal Likelihood for General Markov Models
-
Semi-Supervised Learning with Measure Propagation
Amarnag Subramanya, Jeff Bilmes (102):3311−3370, 2011 PDF BibTeX
-
Learning with Structured Sparsity
Junzhou Huang, Tong Zhang, Dimitris Metaxas (103):3371−3412, 2011 PDF BibTeX
-
A Simpler Approach to Matrix Completion
-
Convergence of Distributed Asynchronous Learning Vector Quantization Algorithms