JMLR Volume 19
-
Numerical Analysis near Singularities in RBF Networks
Weili Guo, Haikun Wei, Yew-Soon Ong, Jaime Rubio Hervas, Junsheng Zhao, Hai Wang, Kanjian Zhang (1):1−39, 2018 PDF BibTeX
-
A Two-Stage Penalized Least Squares Method for Constructing Large Systems of Structural Equations
Chen Chen, Min Ren, Min Zhang, Dabao Zhang (2):1−34, 2018 PDF BibTeX
-
Approximate Submodularity and its Applications: Subset Selection, Sparse Approximation and Dictionary Selection
-
A Hidden Absorbing Semi-Markov Model for Informatively Censored Temporal Data: Learning and Inference
Ahmed M. Alaa, Mihaela van der Schaar (4):1−62, 2018 PDF BibTeX
-
Can We Trust the Bootstrap in High-dimensions? The Case of Linear Models
Noureddine El Karoui, Elizabeth Purdom (5):1−66, 2018 PDF BibTeX
-
RSG: Beating Subgradient Method without Smoothness and Strong Convexity
-
Patchwork Kriging for Large-scale Gaussian Process Regression
-
Scalable Bayes via Barycenter in Wasserstein Space
Sanvesh Srivastava, Cheng Li, David B. Dunson (8):1−35, 2018 PDF BibTeX
-
Experience Selection in Deep Reinforcement Learning for Control
Tim de Bruin, Jens Kober, Karl Tuyls, Robert Babuška (9):1−56, 2018 PDF BibTeX
-
A Constructive Approach to $L_0$ Penalized Regression
Jian Huang, Yuling Jiao, Yanyan Liu, Xiliang Lu (10):1−37, 2018 PDF BibTeX
-
Change-Point Computation for Large Graphical Models: A Scalable Algorithm for Gaussian Graphical Models with Change-Points
-
Statistical Analysis and Parameter Selection for Mapper
Mathieu Carrière, Bertrand Michel, Steve Oudot (12):1−39, 2018 PDF BibTeX
-
A Robust Learning Approach for Regression Models Based on Distributionally Robust Optimization
Ruidi Chen, Ioannis Ch. Paschalidis (13):1−48, 2018 PDF BibTeX
-
Model-Free Trajectory-based Policy Optimization with Monotonic Improvement
Riad Akrour, Abbas Abdolmaleki, Hany Abdulsamad, Jan Peters, Gerhard Neumann (14):1−25, 2018 PDF BibTeX
-
Regularized Optimal Transport and the Rot Mover's Distance
Arnaud Dessein, Nicolas Papadakis, Jean-Luc Rouas (15):1−53, 2018 PDF BibTeX
-
ELFI: Engine for Likelihood-Free Inference
Jarno Lintusaari, Henri Vuollekoski, Antti Kangasrääsiö, Kusti Skytén, Marko Järvenpää, Pekka Marttinen, Michael U. Gutmann, Aki Vehtari, Jukka Corander, Samuel Kaski (16):1−7, 2018 webpagecodePDF BibTeX
-
Streaming kernel regression with provably adaptive mean, variance, and regularization
Audrey Durand, Odalric-Ambrym Maillard, Joelle Pineau (17):1−34, 2018 PDF BibTeX
-
Dual Principal Component Pursuit
-
Distributed Proximal Gradient Algorithm for Partially Asynchronous Computer Clusters
Yi Zhou, Yingbin Liang, Yaoliang Yu, Wei Dai, Eric P. Xing (19):1−32, 2018 PDF BibTeX
-
Refining the Confidence Level for Optimistic Bandit Strategies
-
ThunderSVM: A Fast SVM Library on GPUs and CPUs
Zeyi Wen, Jiashuai Shi, Qinbin Li, Bingsheng He, Jian Chen (21):1−5, 2018 webpagecodePDF BibTeX
-
Robust Synthetic Control
Muhammad Amjad, Devavrat Shah, Dennis Shen (22):1−51, 2018 PDF BibTeX
-
Reverse Iterative Volume Sampling for Linear Regression
Michał Dereziński, Manfred K. Warmuth (23):1−39, 2018 PDF BibTeX
-
Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems
Lyudmila Grigoryeva, Juan-Pablo Ortega (24):1−40, 2018 PDF BibTeX
-
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
-
OpenEnsembles: A Python Resource for Ensemble Clustering
Tom Ronan, Shawn Anastasio, Zhijie Qi, Pedro Henrique S. Vieira Tavares, Roman Sloutsky, Kristen M. Naegle (26):1−6, 2018 webpagecodePDF BibTeX
-
Importance Sampling for Minibatches
-
Generalized Rank-Breaking: Computational and Statistical Tradeoffs
-
Gradient Descent Learns Linear Dynamical Systems
Moritz Hardt, Tengyu Ma, Benjamin Recht (29):1−44, 2018 PDF BibTeX
-
Parallelizing Spectrally Regularized Kernel Algorithms
-
A Direct Approach for Sparse Quadratic Discriminant Analysis
Binyan Jiang, Xiangyu Wang, Chenlei Leng (31):1−37, 2018 PDF BibTeX
-
Distribution-Specific Hardness of Learning Neural Networks
-
Goodness-of-Fit Tests for Random Partitions via Symmetric Polynomials
-
A Spectral Approach for the Design of Experiments: Design, Analysis and Algorithms
Bhavya Kailkhura, Jayaraman J. Thiagarajan, Charvi Rastogi, Pramod K. Varshney, Peer-Timo Bremer (34):1−46, 2018 PDF BibTeX
-
Kernel Density Estimation for Dynamical Systems
Hanyuan Hang, Ingo Steinwart, Yunlong Feng, Johan A.K. Suykens (35):1−49, 2018 PDF BibTeX
-
Invariant Models for Causal Transfer Learning
Mateo Rojas-Carulla, Bernhard Schölkopf, Richard Turner, Jonas Peters (36):1−34, 2018 PDF BibTeX
-
The xyz algorithm for fast interaction search in high-dimensional data
Gian-Andrea Thanei, Nicolai Meinshausen, Rajen D. Shah (37):1−42, 2018 PDF BibTeX
-
Local Rademacher Complexity-based Learning Guarantees for Multi-Task Learning
Niloofar Yousefi, Yunwen Lei, Marius Kloft, Mansooreh Mollaghasemi, Georgios C. Anagnostopoulos (38):1−47, 2018 PDF BibTeX
-
State-by-state Minimax Adaptive Estimation for Nonparametric Hidden {M}arkov Models
-
Learning from Comparisons and Choices
Sahand Negahban, Sewoong Oh, Kiran K. Thekumparampil, Jiaming Xu (40):1−95, 2018 PDF BibTeX
-
Connections with Robust PCA and the Role of Emergent Sparsity in Variational Autoencoder Models
Bin Dai, Yu Wang, John Aston, Gang Hua, David Wipf (41):1−42, 2018 PDF BibTeX
-
An Efficient and Effective Generic Agglomerative Hierarchical Clustering Approach
-
Markov Blanket and Markov Boundary of Multiple Variables
-
Kernel Distribution Embeddings: Universal Kernels, Characteristic Kernels and Kernel Metrics on Distributions
Carl-Johann Simon-Gabriel, Bernhard Schölkopf (44):1−29, 2018 PDF BibTeX
-
Random Forests, Decision Trees, and Categorical Predictors: The "Absent Levels" Problem
-
On Tight Bounds for the Lasso
-
Harmonic Mean Iteratively Reweighted Least Squares for Low-Rank Matrix Recovery
Christian Kümmerle, Juliane Sigl (47):1−49, 2018 github.comPDF BibTeX
-
On Generalized Bellman Equations and Temporal-Difference Learning
Huizhen Yu, A. Rupam Mahmood, Richard S. Sutton (48):1−49, 2018 PDF BibTeX
-
Design and Analysis of the NIPS 2016 Review Process
Nihar B. Shah, Behzad Tabibian, Krikamol Muandet, Isabelle Guyon, Ulrike von Luxburg (49):1−34, 2018 PDF BibTeX
-
Emergence of Invariance and Disentanglement in Deep Representations
Alessandro Achille, Stefano Soatto (50):1−34, 2018 PDF BibTeX
-
Covariances, Robustness, and Variational Bayes
Ryan Giordano, Tamara Broderick, Michael I. Jordan (51):1−49, 2018 PDF BibTeX
-
Accelerating Cross-Validation in Multinomial Logistic Regression with $\ell_1$-Regularization
Tomoyuki Obuchi, Yoshiyuki Kabashima (52):1−30, 2018 PDF BibTeX
-
Profile-Based Bandit with Unknown Profiles
Sylvain Lamprier, Thibault Gisselbrecht, Patrick Gallinari (53):1−40, 2018 PDF BibTeX
-
How Deep Are Deep Gaussian Processes?
Matthew M. Dunlop, Mark A. Girolami, Andrew M. Stuart, Aretha L. Teckentrup (54):1−46, 2018 PDF BibTeX
-
Fast MCMC Sampling Algorithms on Polytopes
Yuansi Chen, Raaz Dwivedi, Martin J. Wainwright, Bin Yu (55):1−86, 2018 PDF BibTeX
-
Modular Proximal Optimization for Multidimensional Total-Variation Regularization
-
On Semiparametric Exponential Family Graphical Models
-
Theoretical Analysis of Cross-Validation for Estimating the Risk of the $k$-Nearest Neighbor Classifier
Alain Celisse, Tristan Mary-Huard (58):1−54, 2018 PDF BibTeX
-
Maximum Selection and Sorting with Adversarial Comparators
Jayadev Acharya, Moein Falahatgar, Ashkan Jafarpour, Alon Orlitsky, Ananda Theertha Suresh (59):1−31, 2018 PDF BibTeX
-
A New and Flexible Approach to the Analysis of Paired Comparison Data
Ivo F. D. Oliveira, Nir Ailon, Ori Davidov (60):1−29, 2018 PDF BibTeX
-
Simple Classification Using Binary Data
Deanna Needell, Rayan Saab, Tina Woolf (61):1−30, 2018 PDF BibTeX
-
Hinge-Minimax Learner for the Ensemble of Hyperplanes
Dolev Raviv, Tamir Hazan, Margarita Osadchy (62):1−30, 2018 PDF BibTeX
-
Short-term Sparse Portfolio Optimization Based on Alternating Direction Method of Multipliers
Zhao-Rong Lai, Pei-Yi Yang, Liangda Fang, Xiaotian Wu (63):1−28, 2018 codePDF BibTeX
-
Scaling up Data Augmentation MCMC via Calibration
Leo L. Duan, James E. Johndrow, David B. Dunson (64):1−34, 2018 PDF BibTeX
-
Extrapolating Expected Accuracies for Large Multi-Class Problems
Charles Zheng, Rakesh Achanta, Yuval Benjamini (65):1−30, 2018 PDF BibTeX
-
Inference via Low-Dimensional Couplings
Alessio Spantini, Daniele Bigoni, Youssef Marzouk (66):1−71, 2018 PDF BibTeX
-
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
-
Multivariate Bayesian Structural Time Series Model
Jinwen Qiu, S. Rao Jammalamadaka, Ning Ning (68):1−33, 2018 PDF BibTeX
-
Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling
Adrian Šošić, Elmar Rueckert, Jan Peters, Abdelhak M. Zoubir, Heinz Koeppl (69):1−45, 2018 PDF BibTeX
-
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, Nathan Srebro (70):1−57, 2018 PDF BibTeX
-
Optimal Quantum Sample Complexity of Learning Algorithms
Srinivasan Arunachalam, Ronald de Wolf (71):1−36, 2018 PDF BibTeX
-
Scikit-Multiflow: A Multi-output Streaming Framework
Jacob Montiel, Jesse Read, Albert Bifet, Talel Abdessalem (72):1−5, 2018 codePDF BibTeX
-
Optimal Bounds for Johnson-Lindenstrauss Transformations
Michael Burr, Shuhong Gao, Fiona Knoll (73):1−22, 2018 PDF BibTeX
-
An efficient distributed learning algorithm based on effective local functional approximations
Dhruv Mahajan, Nikunj Agrawal, S. Sathiya Keerthi, Sundararajan Sellamanickam, Leon Bottou (74):1−37, 2018 PDF BibTeX
-
Sparse Estimation in Ising Model via Penalized Monte Carlo Methods
Blazej Miasojedow, Wojciech Rejchel (75):1−26, 2018 PDF BibTeX
-
Using Side Information to Reliably Learn Low-Rank Matrices from Missing and Corrupted Observations
Kai-Yang Chiang, Inderjit S. Dhillon, Cho-Jui Hsieh (76):1−35, 2018 PDF BibTeX
-
A Note on Quickly Sampling a Sparse Matrix with Low Rank Expectation
Karl Rohe, Jun Tao, Xintian Han, Norbert Binkiewicz (77):1−13, 2018 PDF BibTeX
-
Online Bootstrap Confidence Intervals for the Stochastic Gradient Descent Estimator
-
A Random Matrix Analysis and Improvement of Semi-Supervised Learning for Large Dimensional Data
-
Robust PCA by Manifold Optimization
-
Improved Asynchronous Parallel Optimization Analysis for Stochastic Incremental Methods
Remi Leblond, Fabian Pedregosa, Simon Lacoste-Julien (81):1−68, 2018 PDF BibTeX
-
Clustering is semidefinitely not that hard: Nonnegative SDP for manifold disentangling
Mariano Tepper, Anirvan M. Sengupta, Dmitri Chklovskii (82):1−30, 2018 PDF BibTeX
-
Seglearn: A Python Package for Learning Sequences and Time Series
David M. Burns, Cari M. Whyne (83):1−7, 2018 codewebpagePDF BibTeX
-
DALEX: Explainers for Complex Predictive Models in R